Aphalo, Pedro J. 2022a.
Ggpmisc: Miscellaneous Extensions to ’Ggplot2’.
https://CRAN.R-project.org/package=ggpmisc.
———. 2022b.
Ggpp: Grammar Extensions to ’Ggplot2’.
https://CRAN.R-project.org/package=ggpp.
Borkovec, Martin, and Niyaz Madin. 2019.
Ggparty: ’Ggplot’ Visualizations for the ’Partykit’ Package.
https://CRAN.R-project.org/package=ggparty.
Braun, W. J., and S. MacQueen. 2022.
MPV: Data Sets from Montgomery, Peck and Vining.
https://CRAN.R-project.org/package=MPV.
Chamberlain, Scott, Vijay Barve, Dan Mcglinn, Damiano Oldoni, Peter Desmet, Laurens Geffert, and Karthik Ram. 2022.
Rgbif: Interface to the Global Biodiversity Information Facility API.
https://CRAN.R-project.org/package=rgbif.
Chamberlain, Scott, and Carl Boettiger. 2017.
“R Python, and Ruby Clients for GBIF Species Occurrence Data.” PeerJ PrePrints.
https://doi.org/10.7287/peerj.preprints.3304v1.
Genz, Alan, and Frank Bretz. 2009. Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics. Heidelberg: Springer-Verlag.
Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl, and Torsten Hothorn. 2021.
mvtnorm: Multivariate Normal and t Distributions.
https://CRAN.R-project.org/package=mvtnorm.
Hamner, Ben, and Michael Frasco. 2018.
Metrics: Evaluation Metrics for Machine Learning.
https://CRAN.R-project.org/package=Metrics.
Holcombe, Alex O., Marton Kovacs, Fredrik Aust, and Balazs Aczel. 2020.
“tenzing: A Web App to Document Contributorship with CRediT.” MetaArXiv.
https://doi.org/10.31222/osf.io/b6ywe.
Hothorn, Torsten. 2021.
Libcoin: Linear Test Statistics for Permutation Inference.
https://CRAN.R-project.org/package=libcoin.
Hothorn, Torsten, Peter Buehlmann, Sandrine Dudoit, Annette Molinaro, and Mark Van Der Laan. 2006. “Survival Ensembles.” Biostatistics 7 (3): 355–73.
Hothorn, Torsten, Kurt Hornik, and Achim Zeileis. 2006a. “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics 15 (3): 651–74.
———. 2006b.
“Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics 15 (3): 651–74.
https://doi.org/10.1198/106186006X133933.
Hothorn, Torsten, and Achim Zeileis. 2015.
“partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research 16: 3905–9.
https://jmlr.org/papers/v16/hothorn15a.html.
J, Lemon. 2006. “Plotrix: A Package in the Red Light District of r.” R-News 6 (4): 8–12.
Kassambara, Alboukadel. 2020.
Ggpubr: ’Ggplot2’ Based Publication Ready Plots.
https://CRAN.R-project.org/package=ggpubr.
Kovacs, Marton, Fredrik Aust, Alex O. Holcombe, and Balazs Aczel. 2020.
“tenzing: Documenting Contributions to Scientific Scholarly Output with CRediT.” https://github.com/marton-balazs-kovacs/tenzing.
Müller, Kirill. 2020.
Here: A Simpler Way to Find Your Files.
https://CRAN.R-project.org/package=here.
Pedersen, Thomas Lin. 2022.
Patchwork: The Composer of Plots.
https://CRAN.R-project.org/package=patchwork.
R Core Team. 2022a.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022b.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022c.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022d.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022e.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022f.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022g.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022h.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
———. 2022i.
R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Rodríguez-Sánchez, Francisco, Connor P. Jackson, and Shaurita D. Hutchins. 2022.
Grateful: Facilitate Citation of r Packages.
https://github.com/Pakillo/grateful.
Sarkar, Deepayan. 2008.
Lattice: Multivariate Data Visualization with r. New York: Springer.
http://lmdvr.r-forge.r-project.org.
Strobl, Carolin, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. 2008.
“Conditional Variable Importance for Random Forests.” BMC Bioinformatics 9 (307).
https://doi.org/10.1186/1471-2105-9-307.
Strobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. 2007.
“Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution.” BMC Bioinformatics 8 (25).
https://doi.org/10.1186/1471-2105-8-25.
Therneau, Terry, and Beth Atkinson. 2022.
Rpart: Recursive Partitioning and Regression Trees.
https://CRAN.R-project.org/package=rpart.
Wand, Matt. 2021.
KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995).
https://CRAN.R-project.org/package=KernSmooth.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.
Wilke, Claus O., and Brenton M. Wiernik. 2022.
Ggtext: Improved Text Rendering Support for ’Ggplot2’.
https://CRAN.R-project.org/package=ggtext.
Xie, Yihui. 2014.
“Knitr: A Comprehensive Tool for Reproducible Research in R.” In
Implementing Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC.
http://www.crcpress.com/product/isbn/9781466561595.
———. 2015.
Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC.
https://yihui.org/knitr/.
———. 2022.
Knitr: A General-Purpose Package for Dynamic Report Generation in r.
https://yihui.org/knitr/.
Xie, Yihui, Joe Cheng, and Xianying Tan. 2022.
DT: A Wrapper of the JavaScript Library ’DataTables’.
https://CRAN.R-project.org/package=DT.
Zeileis, Achim. 2004.
“Econometric Computing with HC and HAC Covariance Matrix Estimators.” Journal of Statistical Software 11 (10): 1–17.
https://doi.org/10.18637/jss.v011.i10.
———. 2006a.
“Implementing a Class of Structural Change Tests: An Econometric Computing Approach.” Computational Statistics & Data Analysis 50 (11): 2987–3008.
https://doi.org/10.1016/j.csda.2005.07.001.
———. 2006b.
“Object-Oriented Computation of Sandwich Estimators.” Journal of Statistical Software 16 (9): 1–16.
https://doi.org/10.18637/jss.v016.i09.
Zeileis, Achim, and Gabor Grothendieck. 2005.
“Zoo: S3 Infrastructure for Regular and Irregular Time Series.” Journal of Statistical Software 14 (6): 1–27.
https://doi.org/10.18637/jss.v014.i06.
Zeileis, Achim, Torsten Hothorn, and Kurt Hornik. 2008a. “Model-Based Recursive Partitioning.” Journal of Computational and Graphical Statistics 17 (2): 492–514.
———. 2008b.
“Model-Based Recursive Partitioning.” Journal of Computational and Graphical Statistics 17 (2): 492–514.
https://doi.org/10.1198/106186008X319331.
Zeileis, Achim, Christian Kleiber, Walter Krämer, and Kurt Hornik. 2003.
“Testing and Dating of Structural Changes in Practice.” Computational Statistics & Data Analysis 44 (1–2): 109–23.
https://doi.org/10.1016/S0167-9473(03)00030-6.
Zeileis, Achim, Susanne Köll, and Nathaniel Graham. 2020.
“Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.” Journal of Statistical Software 95 (1): 1–36.
https://doi.org/10.18637/jss.v095.i01.
Zeileis, Achim, Friedrich Leisch, Kurt Hornik, and Christian Kleiber. 2002.
“Strucchange: An r Package for Testing for Structural Change in Linear Regression Models.” Journal of Statistical Software 7 (2): 1–38.
https://doi.org/10.18637/jss.v007.i02.