Last updated: 2023-04-14
Checks: 7 0
Knit directory:
veg_alcontar/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211007)
was run prior to running the code in the R Markdown file.
Setting a seed ensures that any results that rely on randomness, e.g.
subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 97c5d1c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the
analysis have been committed to Git prior to generating the results (you can
use wflow_publish
or wflow_git_commit
). workflowr only
checks the R Markdown file, but you know if there are other scripts or data
files that it depends on. Below is the status of the Git repository when the
results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made
to the R Markdown (analysis/temporal_analysis_fire_epoch.Rmd
) and HTML (docs/temporal_analysis_fire_epoch.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table below to
view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 97c5d1c | ajpelu | 2023-04-14 | change a la limón |
html | 5591608 | ajpelu | 2023-04-13 | Build site. |
Rmd | aab8ee0 | ajpelu | 2023-04-13 | add analysis congreso pastos 2023 |
veg_raw <- readxl::read_excel(here::here("data/datos_sep2023_todos_juntos.xlsx")) |>
janitor::clean_names()
autumn_fire <- lubridate::ymd("2018-12-18")
spring_fire <- lubridate::ymd("2019-05-07")
veg <- veg_raw |>
filter(zona != "Quemado sin pastoreo") |>
rename(fecha = fecha_muestreos) |>
mutate(treat = as.factor(case_when(
zona == "Quemado con pastoreo" ~ "Ot",
TRUE ~ "Pr"
))) |>
mutate(meses = ifelse(treat == "Ot",
as.numeric(as.character(lubridate::interval(autumn_fire, lubridate::ymd(fecha)) %/% months(1))),
as.numeric(as.character(lubridate::interval(spring_fire, lubridate::ymd(fecha)) %/% months(1))))) |>
mutate(quadrat = as.factor(quadrat)) |>
mutate(meses = case_when(
meses == 0 ~ -1,
TRUE ~ meses
))
veg_total <- veg |> filter(tipo == "total")
veg_mt <- veg |> filter(tipo == "Macrochloa tenacissima")
veg_gs <- veg |> filter(tipo == "Genista scorpius")
# Subset of data (pre/post)
ad_total <- veg_total |> filter(meses %in% c(-1, 22, 24))
ad_mt <- veg_mt |> filter(meses %in% c(-1, 22, 24))
ad_gs <- veg_gs |> filter(meses %in% c(-1, 22, 24))
f <- as.formula(cob_total ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_total,
family = nb)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
normal 47%
tweedie 34%
cauchy 9%
Predicted Distribution of Response
Distribution Probability
neg. binomial (zero-infl.) 62%
beta-binomial 25%
exponential 3%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 3.1363 | 0.1006 | 31.1906 | < 0.0001 |
treatPr | -0.1774 | 0.1436 | -1.2356 | 0.2175 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.9313 | 4.0000 | 96.0674 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 29238.49 | 29238.49 | 42.98 | 0.0000 |
treat | 1 | 0.44 | 0.44 | 0.00 | 0.9797 |
meses:treat | 1 | 555.63 | 555.63 | 0.82 | 0.3679 |
Residuals | 124 | 84364.31 | 680.36 |
f <- as.formula(fitovol ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_total,
family = tw)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
cauchy 41%
tweedie 31%
normal 25%
Predicted Distribution of Response
Distribution Probability
lognormal 72%
tweedie 12%
F 9%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 6.0647 | 0.1952 | 31.0758 | < 0.0001 |
treatPr | -0.2432 | 0.2774 | -0.8767 | 0.3813 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.9171 | 4.0000 | 231.9889 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 239540101 | 239540101 | 43.29 | 0.0000 |
treat | 1 | 3904958 | 3904958 | 0.71 | 0.4025 |
meses:treat | 1 | 867093 | 867093 | 0.16 | 0.6929 |
Residuals | 124 | 686064856 | 5532781 |
f <- as.formula(cob_total ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_mt,
family = tw)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
normal 53%
tweedie 28%
cauchy 9%
Predicted Distribution of Response
Distribution Probability
tweedie 34%
gamma 19%
neg. binomial (zero-infl.) 16%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 2.2188 | 0.4782 | 4.6397 | < 0.0001 |
treatPr | 0.2735 | 0.6524 | 0.4192 | 0.6759 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.6961 | 4.0000 | 33.0268 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 9102.97 | 9102.97 | 8.12 | 0.0068 |
treat | 1 | 344.67 | 344.67 | 0.31 | 0.5822 |
meses:treat | 1 | 908.20 | 908.20 | 0.81 | 0.3733 |
Residuals | 41 | 45950.50 | 1120.74 |
f <- as.formula(fitovol ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_mt,
family = tw)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
normal 50%
tweedie 25%
cauchy 12%
Predicted Distribution of Response
Distribution Probability
lognormal 59%
tweedie 12%
F 9%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 5.7937 | 0.5415 | 10.6995 | < 0.0001 |
treatPr | 0.3420 | 0.7379 | 0.4635 | 0.6439 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.7978 | 4.0000 | 75.5143 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 137417699 | 137417699 | 17.86 | 0.0001 |
treat | 1 | 9546071 | 9546071 | 1.24 | 0.2719 |
meses:treat | 1 | 1792256 | 1792256 | 0.23 | 0.6320 |
Residuals | 41 | 315547113 | 7696271 |
f <- as.formula(cob_total ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_gs,
family = tw)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
normal 38%
tweedie 34%
cauchy 28%
Predicted Distribution of Response
Distribution Probability
tweedie 41%
half-cauchy 25%
lognormal 12%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 1.7469 | 0.2615 | 6.6809 | < 0.0001 |
treatPr | -0.4106 | 0.3856 | -1.0649 | 0.2890 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.8165 | 4.0000 | 64.7466 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 18954.52 | 18954.52 | 46.15 | 0.0000 |
treat | 1 | 419.05 | 419.05 | 1.02 | 0.3181 |
meses:treat | 1 | 335.16 | 335.16 | 0.82 | 0.3714 |
Residuals | 43 | 17662.40 | 410.75 |
f <- as.formula(fitovol ~ s(meses, k=5, bs="cs") + treat)
m <- gamm(f,
random = list(quadrat = ~1),
data = veg_gs,
family = tw)
Maximum number of PQL iterations: 20
# Distribution of Model Family
Predicted Distribution of Residuals
Distribution Probability
cauchy 34%
tweedie 34%
normal 31%
Predicted Distribution of Response
Distribution Probability
lognormal 59%
tweedie 12%
F 9%
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
(Intercept) | 5.1540 | 0.2480 | 20.7843 | < 0.0001 |
treatPr | -0.4222 | 0.3586 | -1.1774 | 0.2413 |
B. smooth terms | edf | Ref.df | F-value | p-value |
s(meses) | 3.7404 | 4.0000 | 72.7425 | < 0.0001 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
Version | Author | Date |
---|---|---|
5591608 | ajpelu | 2023-04-13 |
term | df | sumsq | meansq | statistic | p.value |
---|---|---|---|---|---|
meses | 1 | 119276185.2 | 119276185.2 | 59.21 | 0.0000 |
treat | 1 | 155552.4 | 155552.4 | 0.08 | 0.7824 |
meses:treat | 1 | 641482.1 | 641482.1 | 0.32 | 0.5755 |
Residuals | 43 | 86619094.1 | 2014397.5 |
Tipo | Variable | term | Estimate | SE | F | p |
---|---|---|---|---|---|---|
All species | Total cover | treatOt | 3.136 | 0.101 | 31.19 | < 0.0001 |
All species | Total cover | treatPr | -0.177 | 0.144 | -1.24 | 0.2175 |
All species | Fitovol | treatOt | 6.065 | 0.195 | 31.08 | < 0.0001 |
All species | Fitovol | treatPr | -0.243 | 0.277 | -0.88 | 0.3813 |
Macrochloa tenacissima | Total cover | treatOt | 2.219 | 0.478 | 4.64 | < 0.0001 |
Macrochloa tenacissima | Total cover | treatPr | 0.273 | 0.652 | 0.42 | 0.6759 |
Macrochloa tenacissima | Fitovol | treatOt | 5.794 | 0.541 | 10.70 | < 0.0001 |
Macrochloa tenacissima | Fitovol | treatPr | 0.342 | 0.738 | 0.46 | 0.6439 |
Genista scorpius | Total cover | treatOt | 1.747 | 0.261 | 6.68 | < 0.0001 |
Genista scorpius | Total cover | treatPr | -0.411 | 0.386 | -1.06 | 0.289 |
Genista scorpius | Fitovol | treatOt | 5.154 | 0.248 | 20.78 | < 0.0001 |
Genista scorpius | Fitovol | treatPr | -0.422 | 0.359 | -1.18 | 0.2413 |
tipo | Variable | term | edf | ref.df | F | p |
---|---|---|---|---|---|---|
All species | Total cover | s(meses) | 3.931 | 4 | 96.07 | < 0.0001 |
All species | Fitovol | s(meses) | 3.917 | 4 | 231.99 | < 0.0001 |
Macrochloa tenacissima | Total cover | s(meses) | 3.696 | 4 | 33.03 | < 0.0001 |
Macrochloa tenacissima | Fitovol | s(meses) | 3.798 | 4 | 75.51 | < 0.0001 |
Genista scorpius | Total cover | s(meses) | 3.817 | 4 | 64.75 | < 0.0001 |
Genista scorpius | Fitovol | s(meses) | 3.740 | 4 | 72.74 | < 0.0001 |
Characteristic | Ot | Pr | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-1, N = 321 | 5, N = 321 | 12, N = 321 | 17, N = 321 | 22, N = 321 | 29, N = 321 | -1, N = 321 | 7, N = 321 | 12, N = 321 | 18, N = 321 | 24, N = 321 | |
cob_total | 59.22 ± 5.42 | 16.22 ± 2.26 | 16.78 ± 2.41 | 28.06 ± 3.24 | 25.97 ± 3.25 | 32.00 ± 3.54 | 54.94 ± 5.68 | 8.47 ± 2.00 | 21.94 ± 2.58 | 18.41 ± 2.79 | 27.50 ± 3.58 |
fitovol | 3,415.15 ± 502.49 | 261.85 ± 57.16 | 331.35 ± 76.23 | 600.53 ± 152.12 | 612.47 ± 135.99 | 793.42 ± 204.37 | 3,600.32 ± 600.10 | 196.49 ± 63.90 | 351.24 ± 80.13 | 438.44 ± 116.67 | 897.76 ± 245.94 |
1 Mean ± std.error |
Characteristic | Ot | Pr | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-1, N = 111 | 5, N = 91 | 12, N = 101 | 17, N = 101 | 22, N = 101 | 29, N = 101 | -1, N = 121 | 7, N = 101 | 12, N = 111 | 18, N = 131 | 24, N = 121 | |
cob_total | 62.37 ± 12.17 | 8.28 ± 3.09 | 13.50 ± 3.68 | 21.60 ± 7.50 | 24.93 ± 7.93 | 27.72 ± 8.75 | 59.17 ± 10.81 | 17.93 ± 4.59 | 26.28 ± 5.77 | 25.25 ± 6.11 | 37.34 ± 8.06 |
fitovol | 4,811.34 ± 991.38 | 238.56 ± 125.84 | 468.60 ± 181.18 | 921.65 ± 414.61 | 979.45 ± 347.58 | 1,389.46 ± 557.97 | 5,347.08 ± 1,112.59 | 492.69 ± 139.59 | 733.13 ± 164.78 | 904.74 ± 229.29 | 2,020.42 ± 501.25 |
1 Mean ± std.error |
Characteristic | Ot | Pr | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-1, N = 101 | 5, N = 111 | 12, N = 111 | 17, N = 131 | 22, N = 141 | 29, N = 141 | -1, N = 111 | 7, N = 121 | 12, N = 121 | 18, N = 111 | 24, N = 121 | |
cob_total | 53.20 ± 9.21 | 2.75 ± 0.76 | 5.93 ± 1.65 | 11.36 ± 3.83 | 8.79 ± 3.04 | 13.26 ± 4.16 | 41.27 ± 8.54 | 1.95 ± 1.30 | 1.73 ± 0.57 | 2.63 ± 0.78 | 4.24 ± 1.54 |
fitovol | 3,560.00 ± 650.98 | 19.41 ± 6.53 | 190.33 ± 61.81 | 263.38 ± 119.28 | 240.46 ± 107.63 | 332.91 ± 174.09 | 3,184.45 ± 648.48 | 36.51 ± 33.09 | 13.77 ± 5.74 | 32.35 ± 12.24 | 67.89 ± 29.23 |
1 Mean ± std.error |
R version 4.2.1 (2022-06-23)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.3.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] emmeans_1.8.1-1 plotrix_3.8-2 gtsummary_1.7.0 patchwork_1.1.2
[5] performance_0.10.3 broom_1.0.1 tidymv_3.3.2 kableExtra_1.3.4
[9] itsadug_2.4.1 plotfunctions_1.4 gratia_0.8.1 mgcv_1.8-42
[13] nlme_3.1-157 janitor_2.1.0 here_1.0.1 forcats_0.5.2
[17] stringr_1.4.1 dplyr_1.1.1 purrr_1.0.1 readr_2.1.3
[21] tidyr_1.2.1 tibble_3.2.1 ggplot2_3.4.2 tidyverse_1.3.2
[25] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] readxl_1.4.2 backports_1.4.1 systemfonts_1.0.4
[4] plyr_1.8.7 splines_4.2.1 digest_0.6.31
[7] htmltools_0.5.4 lmerTest_3.1-3 fansi_1.0.4
[10] magrittr_2.0.3 paletteer_1.5.0 googlesheets4_1.0.1
[13] tzdb_0.3.0 modelr_0.1.9 svglite_2.1.0
[16] timechange_0.2.0 colorspace_2.0-3 ggrepel_0.9.3
[19] rvest_1.0.3 haven_2.5.1 xfun_0.35
[22] prismatic_1.1.1 callr_3.7.3 crayon_1.5.2
[25] jsonlite_1.8.4 lme4_1.1-30 zeallot_0.1.0
[28] glue_1.6.2 gtable_0.3.1 gargle_1.2.1
[31] MatrixModels_0.5-1 webshot_0.5.4 statsExpressions_1.5.0
[34] car_3.1-0 abind_1.4-5 scales_1.2.1
[37] mvtnorm_1.1-3 DBI_1.1.3 rstatix_0.7.0
[40] Rcpp_1.0.10 viridisLite_0.4.1 xtable_1.8-4
[43] tweedie_2.3.5 datawizard_0.7.1 httr_1.4.4
[46] RColorBrewer_1.1-3 ellipsis_0.3.2 pkgconfig_2.0.3
[49] farver_2.1.1 sass_0.4.5 dbplyr_2.2.1
[52] utf8_1.2.3 effectsize_0.8.3 reshape2_1.4.4
[55] tidyselect_1.2.0 labeling_0.4.2 rlang_1.1.0
[58] later_1.3.0 munsell_0.5.0 cellranger_1.1.0
[61] tools_4.2.1 cachem_1.0.6 cli_3.6.1
[64] generics_0.1.3 evaluate_0.18 fastmap_1.1.0
[67] yaml_2.3.7 rematch2_2.1.2 processx_3.8.0
[70] knitr_1.41 fs_1.6.1 randomForest_4.7-1.1
[73] pbapply_1.6-0 whisker_0.4.1 mvnfast_0.2.8
[76] xml2_1.3.3 correlation_0.8.4 compiler_4.2.1
[79] rstudioapi_0.14 ggsignif_0.6.3 gt_0.9.0
[82] reprex_2.0.2 broom.helpers_1.13.0 afex_1.2-0
[85] bslib_0.4.2 stringi_1.7.8 highr_0.9
[88] ps_1.7.4 parameters_0.20.3 lattice_0.20-45
[91] Matrix_1.5-1 commonmark_1.8.1 markdown_1.5
[94] nloptr_2.0.3 vctrs_0.6.1 pillar_1.9.0
[97] lifecycle_1.0.3 jquerylib_0.1.4 estimability_1.4.1
[100] insight_0.19.1 httpuv_1.6.8 R6_2.5.1
[103] bookdown_0.30 promises_1.2.0.1 BayesFactor_0.9.12-4.4
[106] boot_1.3-28 MASS_7.3-58.3 assertthat_0.2.1
[109] rprojroot_2.0.3 withr_2.5.0 parallel_4.2.1
[112] bayestestR_0.13.0 hms_1.1.2 grid_4.2.1
[115] coda_0.19-4 minqa_1.2.4 rmarkdown_2.18
[118] snakecase_0.11.0 carData_3.0-5 googledrive_2.0.0
[121] git2r_0.30.1 ggpubr_0.4.0 getPass_0.2-2
[124] numDeriv_2016.8-1.1 lubridate_1.9.2 ggstatsplot_0.11.0.9000