Last updated: 2022-04-13

Checks: 7 0

Knit directory: veg_alcontar/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211007) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1d91b1b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/Cobertura_fitovolumen_corregido_parcela.xlsx

Unstaged changes:
    Modified:   output/paper_SUDOE/compara_cobertura.jpg

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/compara_methods.Rmd) and HTML (docs/compara_methods.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 1d91b1b ajpelu 2022-04-13 add correlation qp-qmp
html 5a89fea ajpelu 2022-04-13 Build site.
Rmd 8ac0cd2 ajpelu 2022-04-13 add new analysis
html a3d3eb4 ajpelu 2022-04-01 Build site.
Rmd 2a0a2cb ajpelu 2022-04-01 update analysis paper sudoe
html b4ebf2e ajpelu 2022-04-01 Build site.
Rmd a6c71fa ajpelu 2022-04-01 add analysis_SUDOE cobertura
Rmd 1cf2118 ajpelu 2022-02-04 update
html 792adb1 ajpelu 2022-02-02 Build site.
Rmd 179f390 ajpelu 2022-02-02 genera plots compara metodos

Introduction

Comparison of estimation methods for coverage, phytovolume, richness and diversity (shannon)

  • Prepara data

Cobertura

  • Summary values
Cobertura || Summary
metodo mean sd se cv median n
quadrat 29.92 18.47 1.89 61.75 26.50 96
dronQ 23.55 21.01 2.14 89.23 15.74 96
line_intercept 27.19 6.49 1.87 23.86 29.67 12
point_quadrat 55.50 7.62 2.20 13.73 56.00 12
dronT 17.46 2.71 0.78 15.51 17.07 12

1.1 Comparación cobertura Quadrat - DronQ

  • Comprobamos Normalidad y Homocedascticidad

  • Normality?

Version Author Date
5a89fea ajpelu 2022-04-13

    Shapiro-Wilk normality test

data:  cob_selected$value
W = 0.89104, p-value = 1.299e-10

Los resultados indican que los datos no son normales (W = 0.89; p<0.0001)

  • Homogeneidad de la varianza?

    Bartlett test of homogeneity of variances

data:  cob_selected$value and cob_selected$metodo
Bartlett's K-squared = 1.5582, df = 1, p-value = 0.2119

Según los resultados, no parece existir heterogeneidad en las varianzas (Bartlett’s K-squared = 1.56; p=0.2119)

Por tanto, dos opciones: aplicar método wilcox.test o transformar datos (log) y aplicar t-test

  • Wilcox test

    Wilcoxon rank sum test with continuity correction

data:  value by metodo
W = 5967.5, p-value = 0.0004154
alternative hypothesis: true location shift is not equal to 0
  • T-test de datos transformados (log)

En cualquier caso obtenemos los siguientes resultados: - Existen diferencias significativas tanto si usamos el test no paramétrico de Wilcoxon (W = 5967.5; p=0.0004), como si aplicamos el test paramétrico a los datos transformados (t = 3.997; p<0.0001). De forma gráfica

Version Author Date
5a89fea ajpelu 2022-04-13

Correlación Quadrat - Dron Q

Ver resultados presentados al congreso forestal

1.2 Correlación de dronT (500 m2) con Line Intercept y PointQuadrat

Version Author Date
5a89fea ajpelu 2022-04-13

1.3 Comparación Line-Intercept, Quadrat, PointQuadrat

Vamos a realizar la comparación seleccionando para cada parcela (n=12) un valor de cobertura de quadrats. Éste valor se calcula mediante dos aproximaciones:

  • Promediando para cada parcela el valor de los quadrats
  • Utilizando las medias ponderadas (valores de cobertura de los quadrats ponderados en función de la distribución inicial)
# A tibble: 12 x 3
   parcela  value metodo       
   <chr>    <dbl> <chr>        
 1 AL_NP_13  36.4 quadrat medio
 2 AL_NP_7   21.8 quadrat medio
 3 AL_NP_8   33   quadrat medio
 4 AL_NP_9   29.9 quadrat medio
 5 AL_P_11   24.9 quadrat medio
 6 AL_P_12   33.9 quadrat medio
 7 AL_P_14   31.8 quadrat medio
 8 AL_P_4    37.5 quadrat medio
 9 AL_PR_15  29.8 quadrat medio
10 AL_PR_16  32.6 quadrat medio
11 AL_PR_17  21.2 quadrat medio
12 AL_PR_18  26.4 quadrat medio
statistic p.value parameter method mi_variable
27.11094 5.6e-06 3 Kruskal-Wallis rank sum test cobertura
  • Posteriormente computamos las pruebas post-hoc
Cobertura || Non-parametric Kruskal-Wallis ANOVA - Post-hoc Dunn’s-test with Bonferroni adjustment
H0 statistic p.value
line_intercept = point_quadrat 4.56 <0.001
line_intercept = quadrat medio 0.80 >0.999
line_intercept = quadrat media ponderada 0.29 >0.999
point_quadrat = quadrat medio 3.76 0.001
point_quadrat = quadrat media ponderada 4.27 <0.001
quadrat medio = quadrat media ponderada 0.51 >0.999

Version Author Date
5a89fea ajpelu 2022-04-13

Observamos que no hay diferencias entre LI, y los quadrats medios, ni quadrats ponderado.

Correlaciones

Version Author Date
5a89fea ajpelu 2022-04-13

PQ ~ LI,Qm,Qmp

Version Author Date
5a89fea ajpelu 2022-04-13

LI ~ PQ,Qm,Qmp

Version Author Date
5a89fea ajpelu 2022-04-13
a3d3eb4 ajpelu 2022-04-01

Qm ~ PQ,LI,Qp

Version Author Date
5a89fea ajpelu 2022-04-13

Qp ~ PQ,LI,Qm

Version Author Date
5a89fea ajpelu 2022-04-13

Coeficiente de Variación

Analizamos los datos de CV, si son diferentes significativamente. Aplicamos el test MSLRT (Modified signed-likelihood ratio test) para cada uno de los pares de métodos.

Cobertura || Pairwise Modified signed-likelihood ratio test (SLRT) for equality of CVs
V1 V2 MSLRT p_value
quadrat dronQ 6.13 0.01326
quadrat line_intercept 9.22 0.00240
quadrat point_quadrat 19.22 0.00001
quadrat dronT 16.88 0.00004
dronQ line_intercept 13.98 0.00019
dronQ point_quadrat 24.60 0.00000
dronQ dronT 22.16 0.00000
line_intercept point_quadrat 2.88 0.08977
line_intercept dronT 1.77 0.18398
point_quadrat dronT 0.14 0.70956

Fitovolumen

  • Summary values
Fitovolumen || Summary
metodo mean sd se cv median n
quadrat 778.57 1108.78 113.16 142.41 323.40 96
dronQ 421.70 678.47 69.25 160.89 125.90 96
line_intercept 531.04 274.90 79.36 51.77 543.13 12
dronT 450.63 141.74 40.92 31.45 408.39 12

Modelo

  • Aplicamos un modelo de Kruskal-Wallis con comparaciones post-hoc aplicando test de Dunn (correcciones de Bonferroni).
  • Los resultados son los siguientes:
statistic p.value parameter method mi_variable
23.40999 3.32e-05 3 Kruskal-Wallis rank sum test fitovolumen
  • Posteriormente computamos las pruebas post-hoc
Fitovolumen || Non-parametric Kruskal-Wallis ANOVA - Post-hoc Dunn’s-test with Bonferroni adjustment
H0 statistic p.value
quadrat = dronQ 4.20 0.0002
quadrat = line_intercept 0.74 1.0000
quadrat = dronT 0.68 1.0000
dronQ = line_intercept 2.72 0.0397
dronQ = dronT 2.66 0.0464
line_intercept = dronT 0.04 1.0000

Version Author Date
5a89fea ajpelu 2022-04-13

Coeficiente de Variación

Analizamos los datos de CV, si son diferentes significativamente. Aplicamos el test MSLRT (Modified signed-likelihood ratio test) para cada uno de los pares de métodos.

Fitovolumen || Pairwise Modified signed-likelihood ratio test (SLRT) for equality of CVs
V1 V2 MSLRT p_value
quadrat dronQ 0.27 0.60538
quadrat line_intercept 4.69 0.03041
quadrat dronT 10.28 0.00135
dronQ line_intercept 4.89 0.02694
dronQ dronT 9.99 0.00158
line_intercept dronT 1.94 0.16351

Richness

  • Summary values
Richness || Summary
metodo mean sd se cv median n
quadrat 10.57 3.89 0.40 36.77 10.0 96
line_intercept 13.00 3.10 0.90 23.88 13.0 12
point_quadrat 13.17 4.24 1.22 32.20 14.0 12
point_quadrat_extenso 31.50 7.99 2.31 25.38 29.5 12
quadrat_parcela 34.08 10.39 3.00 30.48 34.5 12

Modelo

  • Aplicamos un modelo de Kruskal-Wallis con comparaciones post-hoc aplicando test de Dunn (correcciones de Bonferroni).
  • Los resultados son los siguientes:
statistic p.value parameter method mi_variable
64.59165 0 4 Kruskal-Wallis rank sum test riqueza
  • Posteriormente computamos las pruebas post-hoc
Riqueza || Non-parametric Kruskal-Wallis ANOVA - Post-hoc Dunn’s-test with Bonferroni adjustment
H0 statistic p.value
quadrat = line_intercept 1.82 0.6853
quadrat = point_quadrat 1.68 0.9341
quadrat = point_quadrat_extenso 5.90 0.0000
quadrat = quadrat_parcela 6.02 0.0000
line_intercept = point_quadrat 0.11 1.0000
line_intercept = point_quadrat_extenso 3.06 0.0221
line_intercept = quadrat_parcela 3.15 0.0163
point_quadrat = point_quadrat_extenso 3.17 0.0153
point_quadrat = quadrat_parcela 3.26 0.0112
point_quadrat_extenso = quadrat_parcela 0.09 1.0000

Version Author Date
5a89fea ajpelu 2022-04-13

Coeficiente de Variación

Analizamos los datos de CV, si son diferentes significativamente. Aplicamos el test MSLRT (Modified signed-likelihood ratio test) para cada uno de los pares de métodos.

Riqueza || Pairwise Modified signed-likelihood ratio test (SLRT) for equality of CVs
V1 V2 MSLRT p_value
quadrat line_intercept 2.82 0.09335
quadrat point_quadrat 0.40 0.52492
quadrat point_quadrat_extenso 2.18 0.14018
quadrat quadrat_parcela 0.70 0.40309
line_intercept point_quadrat 0.80 0.37022
line_intercept point_quadrat_extenso 0.02 0.87866
line_intercept quadrat_parcela 0.54 0.46359
point_quadrat point_quadrat_extenso 0.50 0.47807
point_quadrat quadrat_parcela 0.01 0.90371
point_quadrat_extenso quadrat_parcela 0.30 0.58628

Shannon

  • Summary values
Richness || Summary
metodo mean sd se cv median n
quadrat 1.34 0.56 0.06 41.72 1.37 96
line_intercept 1.72 0.49 0.14 28.71 1.63 12
point_quadrat 1.99 0.45 0.13 22.82 1.95 12

Modelo

  • Aplicamos un modelo de ANOVA con comparaciones post-hoc aplicando test de Dunn (correcciones de Bonferroni).
  • Los resultados son los siguientes:
OK: There is not clear evidence for different variances across groups (Bartlett Test, p = 0.611).
OK: residuals appear as normally distributed (p = 0.168).
Parameter Sum_Squares df Mean_Square F p Eta2 Eta2_CI_low Eta2_CI_high
metodo 5.41 2 2.71 9.09 0.00021 0.134 0.046 0.227
Residuals 34.83 117 0.30
The ANOVA (formula: value ~ metodo) suggests that:

  - The main effect of metodo is statistically significant and medium (F(2, 117) = 9.09, p < .001; Eta2 = 0.13, 90% CI [0.05, 0.23])

Effect sizes were labelled following Field's (2013) recommendations.
  • Posteriormente computamos las pruebas post-hoc
Diversidad || ANOVA - Post-hoc Bonferroni adjustment
contrast estimate SE df t.ratio p.value
quadrat - line_intercept -0.378 0.167 117 -2.27 0.0760
quadrat - point_quadrat -0.642 0.167 117 -3.84 0.0006
line_intercept - point_quadrat -0.263 0.223 117 -1.18 0.7181

Version Author Date
5a89fea ajpelu 2022-04-13

Coeficiente de Variación

Analizamos los datos de CV, si son diferentes significativamente. Aplicamos el test MSLRT (Modified signed-likelihood ratio test) para cada uno de los pares de métodos.

Diversidad || Pairwise Modified signed-likelihood ratio test (SLRT) for equality of CVs
V1 V2 MSLRT p_value
quadrat line_intercept 2.13 0.14465
quadrat point_quadrat 4.81 0.02832
line_intercept point_quadrat 0.48 0.48795

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] corrplot_0.92      multcompView_0.1-8 ggtext_0.1.1       PMCMRplus_1.9.3   
 [5] PMCMR_4.3          statmod_1.4.36     tweedie_2.3.3      report_0.3.0      
 [9] kableExtra_1.3.1   cvequality_0.2.0   performance_0.8.0  ggdist_3.0.1      
[13] Metrics_0.1.4      ggstatsplot_0.7.2  colorspace_2.0-2   ggpubr_0.4.0      
[17] ggforce_0.3.2      ggdark_0.2.1       janitor_2.1.0      here_1.0.1        
[21] forcats_0.5.1      stringr_1.4.0      dplyr_1.0.6        purrr_0.3.4       
[25] readr_1.4.0        tidyr_1.1.3        tibble_3.1.2       ggplot2_3.3.5     
[29] tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
  [1] readxl_1.3.1              pairwiseComparisons_3.1.3
  [3] backports_1.2.1           systemfonts_1.0.0        
  [5] plyr_1.8.6                splines_4.0.2            
  [7] gmp_0.6-2                 kSamples_1.2-9           
  [9] ipmisc_5.0.2              TH.data_1.0-10           
 [11] digest_0.6.27             SuppDists_1.1-9.5        
 [13] htmltools_0.5.2           fansi_0.4.2              
 [15] magrittr_2.0.1            memoise_2.0.0            
 [17] paletteer_1.3.0           openxlsx_4.2.3           
 [19] modelr_0.1.8              sandwich_3.0-0           
 [21] rvest_1.0.0               ggrepel_0.9.1            
 [23] textshaping_0.3.2         haven_2.3.1              
 [25] xfun_0.23                 prismatic_1.0.0          
 [27] callr_3.7.0               crayon_1.4.1             
 [29] jsonlite_1.7.2            zeallot_0.1.0            
 [31] survival_3.2-7            zoo_1.8-8                
 [33] glue_1.4.2                polyclip_1.10-0          
 [35] gtable_0.3.0              emmeans_1.5.4            
 [37] webshot_0.5.2             MatrixModels_0.4-1       
 [39] distributional_0.3.0      statsExpressions_1.1.0   
 [41] car_3.0-10                Rmpfr_0.8-2              
 [43] abind_1.4-5               scales_1.1.1.9000        
 [45] mvtnorm_1.1-1             DBI_1.1.1                
 [47] rstatix_0.6.0             Rcpp_1.0.7               
 [49] gridtext_0.1.4            viridisLite_0.4.0        
 [51] xtable_1.8-4              foreign_0.8-81           
 [53] httr_1.4.2                ellipsis_0.3.2           
 [55] pkgconfig_2.0.3           reshape_0.8.8            
 [57] farver_2.1.0              sass_0.3.1               
 [59] dbplyr_2.1.1              utf8_1.1.4               
 [61] labeling_0.4.2            effectsize_0.4.5         
 [63] tidyselect_1.1.1          rlang_0.4.12             
 [65] later_1.1.0.1             ggcorrplot_0.1.3         
 [67] munsell_0.5.0             cellranger_1.1.0         
 [69] tools_4.0.2               cachem_1.0.4             
 [71] cli_2.5.0                 generics_0.1.0           
 [73] broom_0.7.9               evaluate_0.14            
 [75] fastmap_1.1.0             ragg_1.1.1               
 [77] BWStest_0.2.2             yaml_2.2.1               
 [79] rematch2_2.1.2            processx_3.5.1           
 [81] knitr_1.31                fs_1.5.0                 
 [83] zip_2.1.1                 nlme_3.1-152             
 [85] WRS2_1.1-1                pbapply_1.4-3            
 [87] whisker_0.4               xml2_1.3.2               
 [89] correlation_0.6.1         compiler_4.0.2           
 [91] rstudioapi_0.13           curl_4.3                 
 [93] ggsignif_0.6.0            reprex_2.0.0             
 [95] tweenr_1.0.1              bslib_0.2.4              
 [97] stringi_1.7.4             highr_0.8                
 [99] ps_1.5.0                  parameters_0.14.0        
[101] lattice_0.20-41           Matrix_1.3-2             
[103] vctrs_0.3.8               pillar_1.6.1             
[105] lifecycle_1.0.1           mc2d_0.1-18              
[107] jquerylib_0.1.3           estimability_1.3         
[109] data.table_1.14.0         insight_0.14.4           
[111] patchwork_1.1.1           httpuv_1.5.5             
[113] R6_2.5.1                  promises_1.2.0.1         
[115] rio_0.5.16                BayesFactor_0.9.12-4.2   
[117] codetools_0.2-18          MASS_7.3-53              
[119] gtools_3.8.2              assertthat_0.2.1         
[121] rprojroot_2.0.2           withr_2.4.1              
[123] multcomp_1.4-16           mgcv_1.8-33              
[125] bayestestR_0.9.0          parallel_4.0.2           
[127] hms_1.0.0                 grid_4.0.2               
[129] coda_0.19-4               rmarkdown_2.8            
[131] snakecase_0.11.0          carData_3.0-4            
[133] git2r_0.28.0              getPass_0.2-2            
[135] lubridate_1.7.10