workflowr
Last updated: 2022-02-17
Checks: 7 0
Knit directory: soil_alcontar/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210907)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 71dd129 . See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/C369E4F4/
Ignored: .Rproj.user/shared/notebooks/0EF54E14-NOBORRAR/
Ignored: .Rproj.user/shared/notebooks/27FF967E-analysis_pre_post_epoca/
Ignored: .Rproj.user/shared/notebooks/33E25F73-analysis_resilience/
Ignored: .Rproj.user/shared/notebooks/3F603CAC-map/
Ignored: .Rproj.user/shared/notebooks/4672E36C-study_area/
Ignored: .Rproj.user/shared/notebooks/4A68381F-general_overview_soils/
Ignored: .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
Ignored: .Rproj.user/shared/notebooks/5D919DFD-analysis_zona_time_postFire/
Ignored: .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
Ignored: .Rproj.user/shared/notebooks/A3F813C2-index/
Ignored: .Rproj.user/shared/notebooks/D4E3AA10-analysis_zona_time/
Untracked files:
Untracked: analysis/NOBORRAR.Rmd
Untracked: analysis/analysis_pre_post_cache/
Untracked: analysis/test.Rmd
Untracked: data/spatial/lucdeme/
Untracked: data/spatial/test/
Untracked: map.Rmd
Untracked: output/anovas_pre_post_epoca.csv
Untracked: output/anovas_zona_time.csv
Untracked: output/anovas_zona_time_postFire.csv
Untracked: output/meanboot_pre_post_epoca.csv
Untracked: scripts/generate_3dview.R
Unstaged changes:
Modified: analysis/_site.yml
Modified: data/Resultados_Suelos_2018_2021_v2.xlsx
Modified: data/spatial/.DS_Store
Modified: data/spatial/01_EP_ANDALUCIA/EP_Andalucía.dbf
Deleted: index.Rmd
Modified: output/anovas_pre_post.csv
Modified: scripts/00_prepare_data.R
Modified: temporal_comparison.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_zona_time_postFire.Rmd
) and HTML (docs/analysis_zona_time_postFire.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File
Version
Author
Date
Message
html
771ce26
ajpelu
2021-09-15
Build site.
Rmd
f85e115
ajpelu
2021-09-15
include new table visualization
html
e063cee
ajpelu
2021-09-14
Build site.
Rmd
b2f355b
ajpelu
2021-09-14
add analysis
Introduction
Analysis of temporal evolution of soil parameters along time.
Only for Autumn treatment (i.e. zona == “P”; zona == “NP”)
Interpret zona as “grazing effect”:
zona == “P” corresponds to Browsing
zona == “NP” corresponds to No Browsing
Prepare data
raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"),
sheet = "SEGUIMIENTO_SUELOS_sin_ouliers") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre,
"NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~
"Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"),
zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "QOt_NP", str_detect(geo_parcela_nombre,
"PR_") ~ "QPr_P", str_detect(geo_parcela_nombre, "P_") ~ "QOt_P"), fecha = lubridate::ymd(fecha),
pre_post_quema = case_when(pre_post_quema == "Prequema" ~ "0 preQuema", pre_post_quema ==
"Postquema" ~ "1 postQuema"))
Compute date as months after fire
autumn_fire <- lubridate::ymd("2018-12-18")
soil <- raw_soil %>% filter(zona != "QPr_P") %>% filter(fecha != "2018-12-11") %>%
mutate(zona = as.factor(zona)) %>% mutate(meses = as.factor(as.character(lubridate::interval(autumn_fire,
lubridate::ymd(fecha))%/%months(1)))) %>% mutate(pastoreo = as.factor(case_when(zona ==
"QOt_P" ~ "Browsing", zona == "QOt_NP" ~ "No Browsing"))) %>% relocate(pastoreo,
fecha, meses) %>% dplyr::select(-pre_post_quema, -tratamiento)
xtabs(~meses + pastoreo, data = soil)
pastoreo
meses Browsing No Browsing
0 24 24
22 25 25
29 24 24
# sss <- soil %>% dplyr::select(meses, pastoreo, ca_percent)
Modelize
For each response variable, the approach modelling is
\(Y \sim pastoreo (Browsing|NoBrowsing)+ Fecha(0|22|29) + zona \times Fecha\)
using the “(1|pastoreo:geo_parcela_nombre)” as nested random effects
Humedad
humedad ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pastoreo 4.60 4.597 1 6.005 0.6233 0.4598622
meses 362.22 181.110 2 133.044 24.5534 8.395e-10 ***
pastoreo:meses 132.90 66.452 2 133.044 9.0090 0.0002141 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
t.ratio
p.value
0 - 22
3.6611
0.5490
133.0276
6.6684
0.0000
0 - 29
0.8268
0.5575
133.0164
1.4830
0.3023
22 - 29
-2.8343
0.5524
133.0747
-5.1307
0.0000
meses
pastoreo
contrast
estimate
SE
df
t.ratio
p.value
0
.
No Browsing - Browsing
1.4692
1.4030
9.5543
1.0472
0.9333
22
.
No Browsing - Browsing
-3.1741
1.3946
9.3270
-2.2760
0.2908
29
.
No Browsing - Browsing
-1.2509
1.4080
9.6864
-0.8884
0.9706
.
Browsing
22 - 0
-1.3395
0.7764
133.0287
-1.7251
0.4705
.
Browsing
29 - 22
1.8727
0.7860
133.1214
2.3826
0.1232
.
No Browsing
22 - 0
-5.9827
0.7764
133.0266
-7.7054
0.0000
.
No Browsing
29 - 22
3.7959
0.7764
133.0266
4.8889
0.0000
CIC
cic ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pastoreo 4.21 4.210 1 5.979 1.3273 0.2933
meses 435.43 217.716 2 133.999 68.6311 <2e-16 ***
pastoreo:meses 2.97 1.485 2 133.999 0.4682 0.6271
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
t.ratio
p.value
0 - 22
0.325
0.3600
134.0292
0.9028
0.6395
0 - 29
-3.500
0.3636
134.0000
-9.6269
0.0000
22 - 29
-3.825
0.3600
134.0292
-10.6238
0.0000
meses
pastoreo
contrast
estimate
SE
df
t.ratio
p.value
0
.
No Browsing - Browsing
-0.5000
0.8904
9.9201
-0.5616
0.9979
22
.
No Browsing - Browsing
-1.1280
0.8846
9.6682
-1.2751
0.8425
29
.
No Browsing - Browsing
-1.0833
0.8904
9.9201
-1.2167
0.8688
.
Browsing
22 - 0
-0.0111
0.5092
134.0292
-0.0217
1.0000
.
Browsing
29 - 22
3.8027
0.5092
134.0292
7.4683
0.0000
.
No Browsing
22 - 0
-0.6390
0.5092
134.0292
-1.2550
0.8107
.
No Browsing
29 - 22
3.8474
0.5092
134.0292
7.5560
0.0000
C
c_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
pastoreo 2.9927 2.9927 1 5.995 1.5033 0.2661352
meses 30.1228 15.0614 2 134.001 7.5658 0.0007706 ***
pastoreo:meses 0.5280 0.2640 2 134.001 0.1326 0.8759091
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
t.ratio
p.value
0 - 22
1.0925
0.2852
134.0095
3.8303
0.0006
0 - 29
0.7256
0.2880
134.0000
2.5194
0.0343
22 - 29
-0.3669
0.2852
134.0095
-1.2863
0.4053
meses
pastoreo
contrast
estimate
SE
df
t.ratio
p.value
0
.
No Browsing - Browsing
-1.4583
1.1364
7.1824
-1.2833
0.8525
22
.
No Browsing - Browsing
-1.1712
1.1336
7.1116
-1.0332
0.9427
29
.
No Browsing - Browsing
-1.3662
1.1364
7.1824
-1.2022
0.8868
.
Browsing
22 - 0
-1.2360
0.4034
134.0095
-3.0643
0.0183
.
Browsing
29 - 22
0.4644
0.4034
134.0095
1.1513
0.8686
.
No Browsing
22 - 0
-0.9489
0.4034
134.0095
-2.3525
0.1325
.
No Browsing
29 - 22
0.2694
0.4034
134.0095
0.6679
0.9928
Fe
fe_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: fe_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 6 0.3182 0.59314
meses 2 134 195.2049 < 2e-16 ***
pastoreo:meses 2 134 3.3444 0.03825 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
0.0451
0.0103
Inf
4.3856
0
0 - 29
0.1858
0.0092
Inf
20.2649
0
22 - 29
0.1406
0.0085
Inf
16.5696
0
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
-0.0998
0.0830
Inf
-1.2019
0.8386
22
.
No Browsing - Browsing
-0.0552
0.0828
Inf
-0.6671
0.9927
29
.
No Browsing - Browsing
-0.0941
0.0822
Inf
-1.1443
0.8696
.
Browsing
22 - 0
-0.0674
0.0148
Inf
-4.5577
0.0000
.
Browsing
29 - 22
-0.1212
0.0121
Inf
-10.0407
0.0000
.
No Browsing
22 - 0
-0.0228
0.0143
Inf
-1.5959
0.5594
.
No Browsing
29 - 22
-0.1601
0.0119
Inf
-13.4113
0.0000
K
k_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: k_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 6.00 3.5557 0.108303
meses 2 134.01 477.4712 < 2.2e-16 ***
pastoreo:meses 2 134.01 6.3832 0.002249 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
0.5391
0.1111
Inf
4.8522
0
0 - 29
1.7591
0.0935
Inf
18.8131
0
22 - 29
1.2200
0.0725
Inf
16.8366
0
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
-1.6632
0.2534
Inf
-6.5632
0.0000
22
.
No Browsing - Browsing
-0.3766
0.2246
Inf
-1.6770
0.4972
29
.
No Browsing - Browsing
-0.1544
0.1900
Inf
-0.8125
0.9770
.
Browsing
22 - 0
-1.1824
0.1867
Inf
-6.3323
0.0000
.
Browsing
29 - 22
-1.3311
0.1096
Inf
-12.1412
0.0000
.
No Browsing
22 - 0
0.1042
0.1204
Inf
0.8654
0.9674
.
No Browsing
29 - 22
-1.1089
0.0947
Inf
-11.7063
0.0000
Mg
mg_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mg_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 6 0.7514 0.419348
meses 2 134 3.1375 0.046594 *
pastoreo:meses 2 134 4.7869 0.009817 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
-0.0295
0.0403
Inf
-0.7309
0.7451
0 - 29
0.0742
0.0376
Inf
1.9735
0.1188
22 - 29
0.1037
0.0377
Inf
2.7478
0.0165
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
-0.3266
0.2138
Inf
-1.5275
0.6124
22
.
No Browsing - Browsing
-0.1644
0.2139
Inf
-0.7685
0.9832
29
.
No Browsing - Browsing
-0.0761
0.2120
Inf
-0.3591
0.9999
.
Browsing
22 - 0
-0.0516
0.0659
Inf
-0.7831
0.9813
.
Browsing
29 - 22
-0.1478
0.0576
Inf
-2.5634
0.0703
.
No Browsing
22 - 0
0.1106
0.0465
Inf
2.3798
0.1151
.
No Browsing
29 - 22
-0.0596
0.0487
Inf
-1.2234
0.8262
C/N
c_n ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: c_n ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 6.0002 2.1619 0.1919
meses 2 133.0248 61.8754 <2e-16 ***
pastoreo:meses 2 133.0248 0.9364 0.3946
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
0.0029
0.0030
Inf
0.9680
0.5972
0 - 29
-0.0401
0.0040
Inf
-10.0033
0.0000
22 - 29
-0.0431
0.0039
Inf
-10.9013
0.0000
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
0.0088
0.0085
Inf
1.0277
0.9210
22
.
No Browsing - Browsing
0.0109
0.0084
Inf
1.2943
0.7820
29
.
No Browsing - Browsing
0.0119
0.0099
Inf
1.1917
0.8444
.
Browsing
22 - 0
-0.0040
0.0039
Inf
-1.0175
0.9247
.
Browsing
29 - 22
0.0426
0.0052
Inf
8.2492
0.0000
.
No Browsing
22 - 0
-0.0019
0.0046
Inf
-0.4045
0.9997
.
No Browsing
29 - 22
0.0435
0.0060
Inf
7.2804
0.0000
MO
mo ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: mo ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 5.9992 0.4239 0.5391
meses 2 134.0502 20.5449 1.649e-08 ***
pastoreo:meses 2 134.0502 0.0116 0.9885
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
-0.0558
0.0162
Inf
-3.4368
0.0017
0 - 29
-0.1241
0.0199
Inf
-6.2501
0.0000
22 - 29
-0.0684
0.0216
Inf
-3.1659
0.0044
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
0.0148
0.0337
Inf
0.4410
0.9995
22
.
No Browsing - Browsing
0.0262
0.0376
Inf
0.6964
0.9905
29
.
No Browsing - Browsing
0.0350
0.0441
Inf
0.7930
0.9799
.
Browsing
22 - 0
0.0501
0.0221
Inf
2.2684
0.1522
.
Browsing
29 - 22
0.0640
0.0290
Inf
2.2053
0.1769
.
No Browsing
22 - 0
0.0614
0.0238
Inf
2.5847
0.0663
.
No Browsing
29 - 22
0.0727
0.0320
Inf
2.2739
0.1501
pH Agua
p_h_agua_eez ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_agua_eez ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 5.9999 0.8325 0.39674
meses 2 134.0153 23.1121 2.379e-09 ***
pastoreo:meses 2 134.0153 4.7246 0.01041 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
0.0002
3e-04
Inf
0.7249
0.7487
0 - 29
-0.0020
3e-04
Inf
-5.6670
0.0000
22 - 29
-0.0022
3e-04
Inf
-6.4407
0.0000
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
0.0001
0.0011
Inf
0.0564
1.0000
22
.
No Browsing - Browsing
-0.0004
0.0011
Inf
-0.3918
0.9998
29
.
No Browsing - Browsing
-0.0021
0.0011
Inf
-1.8180
0.3941
.
Browsing
22 - 0
0.0000
0.0005
Inf
0.0143
1.0000
.
Browsing
29 - 22
0.0031
0.0005
Inf
6.2022
0.0000
.
No Browsing
22 - 0
-0.0005
0.0005
Inf
-1.0401
0.9162
.
No Browsing
29 - 22
0.0014
0.0005
Inf
2.8942
0.0263
pH KCl
p_h_k_cl ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p_h_k_cl ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 5.9999 0.0072 0.93499
meses 2 134.0178 17.3528 1.987e-07 ***
pastoreo:meses 2 134.0178 3.0542 0.05046 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
-0.0005
4e-04
Inf
-1.1937
0.4569
0 - 29
-0.0024
4e-04
Inf
-5.7629
0.0000
22 - 29
-0.0019
4e-04
Inf
-4.6216
0.0000
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
0.0009
0.0013
Inf
0.6690
0.9926
22
.
No Browsing - Browsing
0.0001
0.0013
Inf
0.0618
1.0000
29
.
No Browsing - Browsing
-0.0013
0.0013
Inf
-0.9795
0.9377
.
Browsing
22 - 0
0.0009
0.0006
Inf
1.5184
0.6194
.
Browsing
29 - 22
0.0026
0.0006
Inf
4.4015
0.0001
.
No Browsing
22 - 0
0.0001
0.0006
Inf
0.1738
1.0000
.
No Browsing
29 - 22
0.0013
0.0006
Inf
2.1315
0.2096
NH4
# A tibble: 1 x 3
# Groups: meses, fecha [1]
meses fecha n
<fct> <date> <int>
1 0 2018-12-20 44
NO3
# A tibble: 1 x 3
# Groups: meses, fecha [1]
meses fecha n
<fct> <date> <int>
1 0 2018-12-20 47
P
p ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)
Model: p ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Data: df_model
num Df den Df F Pr(>F)
pastoreo 1 5.9996 0.0232 0.8840
meses 2 134.0368 12.0243 1.574e-05 ***
pastoreo:meses 2 134.0368 1.5180 0.2229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
z.ratio
p.value
0 - 22
0.1346
0.0954
Inf
1.4112
0.3350
0 - 29
0.5383
0.1077
Inf
4.9980
0.0000
22 - 29
0.4038
0.1095
Inf
3.6865
0.0007
meses
pastoreo
contrast
estimate
SE
df
z.ratio
p.value
0
.
No Browsing - Browsing
0.1041
0.1722
Inf
0.6045
0.9960
22
.
No Browsing - Browsing
0.1040
0.1767
Inf
0.5889
0.9966
29
.
No Browsing - Browsing
-0.2714
0.2032
Inf
-1.3357
0.7542
.
Browsing
22 - 0
-0.1345
0.1383
Inf
-0.9728
0.9398
.
Browsing
29 - 22
-0.2161
0.1506
Inf
-1.4343
0.6834
.
No Browsing
22 - 0
-0.1346
0.1313
Inf
-1.0250
0.9220
.
No Browsing
29 - 22
-0.5915
0.1590
Inf
-3.7194
0.0014
N
n_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Analysis of Deviance Table (Type II Wald chisquare tests)
Response: n_percent
Chisq Df Pr(>Chisq)
pastoreo 0.0361 1 0.849276
meses 12.5842 2 0.001851 **
pastoreo:meses 0.4221 2 0.809750
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
t.ratio
p.value
0 - 22
0.3931
0.1114
137
3.5284
0.0016
0 - 29
0.2217
0.1109
137
1.9989
0.1163
22 - 29
-0.1714
0.1144
137
-1.4980
0.2951
meses
pastoreo
contrast
estimate
SE
df
t.ratio
p.value
0
.
No Browsing - Browsing
0.0250
0.1612
137
0.1551
1.0000
22
.
No Browsing - Browsing
0.0160
0.1711
137
0.0936
1.0000
29
.
No Browsing - Browsing
-0.1061
0.1697
137
-0.6255
0.9951
.
Browsing
22 - 0
-0.3887
0.1578
137
-2.4635
0.1004
.
Browsing
29 - 22
0.2325
0.1601
137
1.4518
0.6764
.
No Browsing
22 - 0
-0.3976
0.1574
137
-2.5268
0.0852
.
No Browsing
29 - 22
0.1103
0.1635
137
0.6748
0.9923
Na
na_percent ~ pastoreo * meses + (1 | pastoreo:geo_parcela_nombre)
Analysis of Deviance Table (Type II Wald chisquare tests)
Response: na_percent
Chisq Df Pr(>Chisq)
pastoreo 3.3148 1 0.0686596 .
meses 188.1372 2 < 2.2e-16 ***
pastoreo:meses 17.5761 2 0.0001525 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Post-hoc
meses
estimate
SE
df
t.ratio
p.value
0 - 22
-0.3395
0.0750
138
-4.5284
0
0 - 29
-0.9219
0.0695
138
-13.2591
0
22 - 29
-0.5824
0.0616
138
-9.4576
0
meses
pastoreo
contrast
estimate
SE
df
t.ratio
p.value
0
.
No Browsing - Browsing
0.6720
0.1683
138
3.9932
0.0007
22
.
No Browsing - Browsing
0.1388
0.1555
138
0.8923
0.9622
29
.
No Browsing - Browsing
0.1200
0.1447
138
0.8295
0.9746
.
Browsing
22 - 0
0.6061
0.1152
138
5.2589
0.0000
.
Browsing
29 - 22
0.5918
0.0892
138
6.6373
0.0000
.
No Browsing
22 - 0
0.0729
0.0959
138
0.7605
0.9844
.
No Browsing
29 - 22
0.5730
0.0849
138
6.7521
0.0000
General Overview
Mean + SE table
Characteristic
Browsing
No Browsing
0 , N = 24
22 , N = 25
29 , N = 24
0 , N = 24
22 , N = 25
29 , N = 24
humedad
11.39 (0.79)
10.07 (0.54)
11.91 (0.60)
12.86 (0.86)
6.94 (0.47)
10.67 (0.39)
fe_percent
1.72 (0.07)
1.98 (0.09)
2.61 (0.15)
1.89 (0.04)
1.97 (0.04)
2.89 (0.08)
k_percent
0.29 (0.02)
0.43 (0.02)
1.06 (0.05)
0.54 (0.03)
0.51 (0.03)
1.18 (0.04)
mg_percent
1.10 (0.07)
1.19 (0.08)
1.44 (0.10)
1.74 (0.21)
1.42 (0.12)
1.58 (0.16)
na_percent
0.03 (0.00)
0.05 (0.00)
0.08 (0.01)
0.05 (0.00)
0.05 (0.01)
0.09 (0.00)
n_percent
0.28 (0.03)
0.19 (0.01)
0.24 (0.02)
0.30 (0.04)
0.20 (0.02)
0.22 (0.02)
c_percent
8.73 (0.35)
7.46 (0.38)
7.96 (0.45)
7.27 (0.42)
6.31 (0.36)
6.59 (0.38)
c_n
13.59 (0.74)
14.34 (0.58)
8.87 (0.35)
11.88 (0.72)
12.12 (0.38)
7.94 (0.29)
cic
15.58 (0.47)
15.56 (0.35)
19.38 (0.30)
15.08 (0.36)
14.44 (0.42)
18.29 (0.50)
p
4.91 (0.35)
4.28 (0.47)
3.46 (0.38)
5.50 (0.33)
4.80 (0.80)
2.67 (0.25)
mo
6.15 (0.46)
4.68 (0.28)
3.60 (0.24)
5.86 (0.65)
4.24 (0.42)
3.25 (0.32)
p_h_k_cl
7.57 (0.03)
7.51 (0.02)
7.37 (0.03)
7.52 (0.03)
7.51 (0.03)
7.44 (0.03)
p_h_agua_eez
7.92 (0.03)
7.91 (0.03)
7.73 (0.03)
7.91 (0.02)
7.94 (0.02)
7.85 (0.03)
Anovas table
zona
fecha
zona X fecha
Variables
F
p
F
p
F
p
c_n
2.162
0.192
61.875
0.000
0.936
0.395
cic
1.327
0.293
68.631
0.000
0.468
0.627
c_percent
1.503
0.266
7.566
0.001
0.133
0.876
k_percent
3.556
0.108
477.471
0.000
6.383
0.002
humedad
0.623
0.460
24.553
0.000
9.009
0.000
fe_percent
0.318
0.593
195.205
0.000
3.344
0.038
mg_percent
0.751
0.419
3.138
0.047
4.787
0.010
mo
0.424
0.539
20.545
0.000
0.012
0.989
p
0.023
0.884
12.024
0.000
1.518
0.223
p_h_agua_eez
0.832
0.397
23.112
0.000
4.725
0.010
p_h_k_cl
0.007
0.935
17.353
0.000
3.054
0.050
n_percent
0.036
0.849
12.584
0.002
0.422
0.810
na_percent
3.315
0.069
188.137
0.000
17.576
0.000
Session information
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gtsummary_1.4.2 plotrix_3.8-1 kableExtra_1.3.1 car_3.0-10
[5] carData_3.0-4 glmmADMB_0.8.3.3 glmmTMB_1.0.2.1 DHARMa_0.3.3.0
[9] afex_0.28-1 performance_0.8.0 multcomp_1.4-16 TH.data_1.0-10
[13] mvtnorm_1.1-1 emmeans_1.5.4 lmerTest_3.1-3 lme4_1.1-27.1
[17] Matrix_1.3-2 fitdistrplus_1.1-3 survival_3.2-7 MASS_7.3-53
[21] ggpubr_0.4.0 janitor_2.1.0 here_1.0.1 forcats_0.5.1
[25] stringr_1.4.0 dplyr_1.0.6 purrr_0.3.4 readr_1.4.0
[29] tidyr_1.1.3 tibble_3.1.2 ggplot2_3.3.5 tidyverse_1.3.1
[33] rmdformats_1.0.1 knitr_1.31 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.1 plyr_1.8.6
[4] TMB_1.7.19 splines_4.0.2 digest_0.6.27
[7] foreach_1.5.1 htmltools_0.5.2 fansi_0.4.2
[10] magrittr_2.0.1 checkmate_2.0.0 openxlsx_4.2.3
[13] modelr_0.1.8 sandwich_3.0-0 colorspace_2.0-2
[16] rvest_1.0.0 haven_2.3.1 xfun_0.23
[19] callr_3.7.0 crayon_1.4.1 jsonlite_1.7.2
[22] zoo_1.8-8 iterators_1.0.13 glue_1.4.2
[25] gtable_0.3.0 R2admb_0.7.16.2 webshot_0.5.2
[28] abind_1.4-5 scales_1.1.1.9000 DBI_1.1.1
[31] rstatix_0.6.0 Rcpp_1.0.7 viridisLite_0.4.0
[34] xtable_1.8-4 foreign_0.8-81 httr_1.4.2
[37] ellipsis_0.3.2 farver_2.1.0 pkgconfig_2.0.3
[40] sass_0.3.1 dbplyr_2.1.1 utf8_1.1.4
[43] labeling_0.4.2 tidyselect_1.1.1 rlang_0.4.12
[46] reshape2_1.4.4 later_1.1.0.1 munsell_0.5.0
[49] cellranger_1.1.0 tools_4.0.2 cli_2.5.0
[52] generics_0.1.0 broom_0.7.9 evaluate_0.14
[55] fastmap_1.1.0 yaml_2.2.1 processx_3.5.1
[58] fs_1.5.0 zip_2.1.1 nlme_3.1-152
[61] whisker_0.4 formatR_1.8 xml2_1.3.2
[64] compiler_4.0.2 pbkrtest_0.5-0.1 rstudioapi_0.13
[67] curl_4.3 ggsignif_0.6.0 gt_0.3.0
[70] reprex_2.0.0 broom.helpers_1.4.0 bslib_0.2.4
[73] stringi_1.7.4 highr_0.8 ps_1.5.0
[76] lattice_0.20-41 commonmark_1.7 nloptr_1.2.2.2
[79] vctrs_0.3.8 pillar_1.6.1 lifecycle_1.0.1
[82] jquerylib_0.1.3 estimability_1.3 data.table_1.14.0
[85] insight_0.14.4 httpuv_1.5.5 R6_2.5.1
[88] bookdown_0.21.6 promises_1.2.0.1 rio_0.5.16
[91] codetools_0.2-18 boot_1.3-26 assertthat_0.2.1
[94] rprojroot_2.0.2 withr_2.4.1 parallel_4.0.2
[97] hms_1.0.0 grid_4.0.2 coda_0.19-4
[100] minqa_1.2.4
[ reached getOption("max.print") -- omitted 6 entries ]