Last updated: 2022-02-17

Checks: 6 1

Knit directory: soil_alcontar/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210907) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • pkgs
  • prepare-data
  • session-info-chunk-inserted-by-workflowr
  • unnamed-chunk-1
  • unnamed-chunk-10
  • unnamed-chunk-11
  • unnamed-chunk-12
  • unnamed-chunk-13
  • unnamed-chunk-14
  • unnamed-chunk-15
  • unnamed-chunk-16
  • unnamed-chunk-17
  • unnamed-chunk-18
  • unnamed-chunk-19
  • unnamed-chunk-2
  • unnamed-chunk-20
  • unnamed-chunk-21
  • unnamed-chunk-22
  • unnamed-chunk-23
  • unnamed-chunk-24
  • unnamed-chunk-25
  • unnamed-chunk-26
  • unnamed-chunk-27
  • unnamed-chunk-28
  • unnamed-chunk-29
  • unnamed-chunk-3
  • unnamed-chunk-30
  • unnamed-chunk-31
  • unnamed-chunk-32
  • unnamed-chunk-33
  • unnamed-chunk-34
  • unnamed-chunk-35
  • unnamed-chunk-36
  • unnamed-chunk-37
  • unnamed-chunk-38
  • unnamed-chunk-39
  • unnamed-chunk-4
  • unnamed-chunk-40
  • unnamed-chunk-41
  • unnamed-chunk-42
  • unnamed-chunk-43
  • unnamed-chunk-44
  • unnamed-chunk-45
  • unnamed-chunk-46
  • unnamed-chunk-47
  • unnamed-chunk-48
  • unnamed-chunk-49
  • unnamed-chunk-5
  • unnamed-chunk-50
  • unnamed-chunk-51
  • unnamed-chunk-52
  • unnamed-chunk-53
  • unnamed-chunk-54
  • unnamed-chunk-55
  • unnamed-chunk-56
  • unnamed-chunk-57
  • unnamed-chunk-58
  • unnamed-chunk-59
  • unnamed-chunk-6
  • unnamed-chunk-60
  • unnamed-chunk-61
  • unnamed-chunk-62
  • unnamed-chunk-63
  • unnamed-chunk-64
  • unnamed-chunk-65
  • unnamed-chunk-66
  • unnamed-chunk-67
  • unnamed-chunk-68
  • unnamed-chunk-69
  • unnamed-chunk-7
  • unnamed-chunk-70
  • unnamed-chunk-71
  • unnamed-chunk-72
  • unnamed-chunk-73
  • unnamed-chunk-74
  • unnamed-chunk-75
  • unnamed-chunk-76
  • unnamed-chunk-8
  • unnamed-chunk-9

To ensure reproducibility of the results, delete the cache directory analysis_pre_post_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8960975. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/C369E4F4/
    Ignored:    .Rproj.user/shared/notebooks/0EF54E14-NOBORRAR/
    Ignored:    .Rproj.user/shared/notebooks/27FF967E-analysis_pre_post_epoca/
    Ignored:    .Rproj.user/shared/notebooks/33E25F73-analysis_resilience/
    Ignored:    .Rproj.user/shared/notebooks/3F603CAC-map/
    Ignored:    .Rproj.user/shared/notebooks/4672E36C-study_area/
    Ignored:    .Rproj.user/shared/notebooks/4A68381F-general_overview_soils/
    Ignored:    .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
    Ignored:    .Rproj.user/shared/notebooks/5D919DFD-analysis_zona_time_postFire/
    Ignored:    .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
    Ignored:    .Rproj.user/shared/notebooks/A3F813C2-index/
    Ignored:    .Rproj.user/shared/notebooks/D4E3AA10-analysis_zona_time/

Untracked files:
    Untracked:  analysis/NOBORRAR.Rmd
    Untracked:  analysis/analysis_pre_post_cache/
    Untracked:  analysis/test.Rmd
    Untracked:  data/spatial/lucdeme/
    Untracked:  data/spatial/test/
    Untracked:  map.Rmd
    Untracked:  output/anovas_pre_post_epoca.csv
    Untracked:  output/anovas_zona_time.csv
    Untracked:  output/anovas_zona_time_postFire.csv
    Untracked:  output/meanboot_pre_post_epoca.csv
    Untracked:  scripts/generate_3dview.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   data/Resultados_Suelos_2018_2021_v2.xlsx
    Modified:   data/spatial/.DS_Store
    Modified:   data/spatial/01_EP_ANDALUCIA/EP_Andalucía.dbf
    Deleted:    index.Rmd
    Modified:   output/anovas_pre_post.csv
    Modified:   scripts/00_prepare_data.R
    Modified:   temporal_comparison.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_pre_post.Rmd) and HTML (docs/analysis_pre_post.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html eadc8da ajpelu 2021-09-14 Build site.
Rmd ecb1e66 ajpelu 2021-09-14 generate analysis with new data nh4
html 71c36dd ajpelu 2021-09-10 Build site.
Rmd 297463f ajpelu 2021-09-10 add anova tables; remove preeliminar homedasticity
html 46f8fd8 ajpelu 2021-09-07 Build site.
Rmd 2c59a9d ajpelu 2021-09-07 update
html 68358ce ajpelu 2021-09-07 Build site.
Rmd 6ef970d ajpelu 2021-09-07 add plot
html bfa8071 ajpelu 2021-09-07 Build site.
Rmd dc87911 ajpelu 2021-09-07 include pre post analysis

Prepare data

raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"), 
    sheet = "SEGUIMIENTO_SUELOS_sin_ouliers") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre, 
    "NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~ 
    "Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"), 
    zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "QOt_NP", str_detect(geo_parcela_nombre, 
        "PR_") ~ "QPr_P", str_detect(geo_parcela_nombre, "P_") ~ "QOt_P"), fecha = lubridate::ymd(fecha), 
    pre_post_quema = case_when(pre_post_quema == "Prequema" ~ "0 preQuema", pre_post_quema == 
        "Postquema" ~ "1 postQuema"))
  • Select data pre- and intermediately post-fire (first post-fire sampling: “2018-12-20” and “2019-05-09” for autumn and spring fires respectively)
soil <- raw_soil %>% filter(fecha %in% lubridate::ymd(c("2018-12-11", "2018-12-20", 
    "2019-04-24", "2019-05-09"))) %>% mutate(zona = as.factor(zona), pre_post_quema = as.factor(pre_post_quema))
  • Structure of the data
              zona
pre_post_quema QOt_NP QOt_P QPr_P
   0 preQuema      24    24    24
   1 postQuema     24    24    24

Modelize

  • For each response variable, the approach modelling is

\(Y \sim zona (P|NP|PR) + Fecha(pre|post) + zona \times Fecha\)

  • using the “(1|zona:geo_parcela_nombre)” as nested random effects

  • Then explore error distribution of the variable response and model diagnostics

  • Select the appropiate error distribution and use LMM or GLMM

  • Explore Post-hoc

  • Plot interactions

Humedad

Model

Type III Analysis of Variance Table with Satterthwaite's method
                    Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
pre_post_quema      236.42 236.416     1   129 26.1050 1.136e-06 ***
zona                  1.46   0.728     2     9  0.0803    0.9235    
pre_post_quema:zona 462.22 231.109     2   129 25.5190 4.593e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                        Sum Sq     Mean Sq NumDF DenDF     F value       Pr(>F)
pre_post_quema      236.415514 236.4155136     1   129 26.10495006 1.135929e-06
zona                  1.455293   0.7276463     2     9  0.08034655 9.234509e-01
pre_post_quema:zona 462.217132 231.1085659     2   129 25.51895804 4.592612e-10
                    variable              factor
pre_post_quema       humedad      pre_post_quema
zona                 humedad                zona
pre_post_quema:zona  humedad pre_post_quema:zona

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       13.4 0.676 12.1    11.88     14.8
 1 postQuema      10.8 0.676 12.1     9.32     12.3

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema     2.56 0.502 129 5.109   <.0001 

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
$`emmeans of zona`
 zona   emmean   SE df lower.CL upper.CL
 QOt_NP   12.4 1.09  9     9.97     14.9
 QOt_P    11.9 1.09  9     9.46     14.4
 QPr_P    11.9 1.09  9     9.41     14.3

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate   SE df t.ratio p.value
 QOt_NP - QOt_P   0.5060 1.54  9 0.329   0.9424 
 QOt_NP - QPr_P   0.5579 1.54  9 0.363   0.9306 
 QOt_P - QPr_P    0.0518 1.54  9 0.034   0.9994 

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean   SE   df lower.CL upper.CL
 0 preQuema      11.99 1.17 12.1     9.44     14.5
 1 postQuema     12.86 1.17 12.1    10.31     15.4

zona = QOt_P:
 pre_post_quema emmean   SE   df lower.CL upper.CL
 0 preQuema      12.45 1.17 12.1     9.90     15.0
 1 postQuema     11.39 1.17 12.1     8.84     13.9

zona = QPr_P:
 pre_post_quema emmean   SE   df lower.CL upper.CL
 0 preQuema      15.62 1.17 12.1    13.07     18.2
 1 postQuema      8.11 1.17 12.1     5.57     10.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.872 0.869 129 -1.004  0.3171 

zona = QOt_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    1.054 0.869 129  1.213  0.2273 

zona = QPr_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    7.507 0.869 129  8.641  <.0001 

Degrees-of-freedom method: kenward-roger 

CIC

Model

Type III Analysis of Variance Table with Satterthwaite's method
                    Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
pre_post_quema      31.174 31.1736     1   129  8.7568 0.003671 **
zona                40.297 20.1484     2     9  5.6598 0.025614 * 
pre_post_quema:zona 19.681  9.8403     2   129  2.7642 0.066764 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                      Sum Sq   Mean Sq NumDF DenDF  F value      Pr(>F)
pre_post_quema      31.17361 31.173609     1   129 8.756838 0.003670913
zona                40.29686 20.148428     2     9 5.659804 0.025613698
pre_post_quema:zona 19.68056  9.840278     2   129 2.764188 0.066763596
                    variable              factor
pre_post_quema           cic      pre_post_quema
zona                     cic                zona
pre_post_quema:zona      cic pre_post_quema:zona

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       15.5 0.462 11.5     14.4     16.5
 1 postQuema      14.5 0.462 11.5     13.5     15.5

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    0.931 0.314 129 2.959   0.0037 

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
$`emmeans of zona`
 zona   emmean    SE df lower.CL upper.CL
 QOt_NP   15.4 0.753  9     13.7     17.1
 QOt_P    16.6 0.753  9     14.9     18.3
 QPr_P    13.0 0.753  9     11.3     14.7

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate   SE df t.ratio p.value
 QOt_NP - QOt_P    -1.19 1.06  9 -1.115  0.5291 
 QOt_NP - QPr_P     2.33 1.06  9  2.191  0.1262 
 QOt_P - QPr_P      3.52 1.06  9  3.307  0.0225 

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       15.7 0.801 11.5     13.9     17.4
 1 postQuema      15.1 0.801 11.5     13.3     16.8

zona = QOt_P:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       17.5 0.801 11.5     15.8     19.3
 1 postQuema      15.6 0.801 11.5     13.8     17.3

zona = QPr_P:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       13.2 0.801 11.5     11.4     14.9
 1 postQuema      12.9 0.801 11.5     11.2     14.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    0.583 0.545 129 1.071   0.2862 

zona = QOt_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    1.958 0.545 129 3.595   0.0005 

zona = QPr_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema    0.250 0.545 129 0.459   0.6470 

Degrees-of-freedom method: kenward-roger 

C

Model

Type III Analysis of Variance Table with Satterthwaite's method
                     Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
pre_post_quema      17.1120 17.1120     1   129  7.8770 0.005784 **
zona                 5.3708  2.6854     2     9  1.2361 0.335481   
pre_post_quema:zona  0.5673  0.2837     2   129  0.1306 0.877707   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                        Sum Sq   Mean Sq NumDF DenDF   F value     Pr(>F)
pre_post_quema      17.1120115 17.112011     1   129 7.8770265 0.00578378
zona                 5.3707569  2.685378     2     9 1.2361374 0.33548133
pre_post_quema:zona  0.5673181  0.283659     2   129 0.1305743 0.87770709
                     variable              factor
pre_post_quema      c_percent      pre_post_quema
zona                c_percent                zona
pre_post_quema:zona c_percent pre_post_quema:zona

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       7.16 0.405 10.9     6.27     8.06
 1 postQuema      7.85 0.405 10.9     6.96     8.75

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.689 0.246 129 -2.807  0.0058 

Results are averaged over the levels of: zona 
Degrees-of-freedom method: kenward-roger 
$`emmeans of zona`
 zona   emmean    SE df lower.CL upper.CL
 QOt_NP   6.89 0.669  9     5.37     8.40
 QOt_P    8.33 0.669  9     6.82     9.84
 QPr_P    7.31 0.669  9     5.80     8.82

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE df t.ratio p.value
 QOt_NP - QOt_P   -1.446 0.945  9 -1.529  0.3233 
 QOt_NP - QPr_P   -0.424 0.945  9 -0.448  0.8965 
 QOt_P - QPr_P     1.022 0.945  9  1.081  0.5483 

Results are averaged over the levels of: pre_post_quema 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       6.50 0.702 10.9     4.96     8.05
 1 postQuema      7.27 0.702 10.9     5.72     8.81

zona = QOt_P:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       7.94 0.702 10.9     6.39     9.48
 1 postQuema      8.73 0.702 10.9     7.18    10.27

zona = QPr_P:
 pre_post_quema emmean    SE   df lower.CL upper.CL
 0 preQuema       7.05 0.702 10.9     5.51     8.60
 1 postQuema      7.57 0.702 10.9     6.02     9.11

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.765 0.425 129 -1.799  0.0744 

zona = QOt_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.790 0.425 129 -1.858  0.0655 

zona = QPr_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.512 0.425 129 -1.205  0.2306 

Degrees-of-freedom method: kenward-roger 

Fe

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: fe_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df    F p.value
1      pre_post_quema 1, 129 0.52    .473
2                zona   2, 9 0.69    .526
3 pre_post_quema:zona 2, 129 0.17    .845
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: fe_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F Pr(>F)
pre_post_quema           1    129 0.5186 0.4727
zona                     2      9 0.6903 0.5261
pre_post_quema:zona      2    129 0.1688 0.8449

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.549 0.00599 Inf     0.537     0.561
 1 postQuema     0.560 0.00818 Inf     0.544     0.576

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0112 0.00566 Inf -1.979  0.0478 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean      SE  df asymp.LCL asymp.UCL
 QOt_NP  0.526 0.00599 Inf     0.514     0.538
 QOt_P   0.607 0.00848 Inf     0.590     0.623
 QPr_P   0.531 0.00846 Inf     0.514     0.547

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate      SE  df z.ratio p.value
 QOt_NP - QOt_P -0.08067 0.00609 Inf -13.241 <.0001 
 QOt_NP - QPr_P -0.00486 0.00608 Inf  -0.799 0.7036 
 QOt_P - QPr_P   0.07581 0.00860 Inf   8.819 <.0001 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.515 0.00543 Inf     0.504     0.526
 1 postQuema     0.537 0.00747 Inf     0.522     0.552

zona = QOt_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.601 0.00768 Inf     0.586     0.616
 1 postQuema     0.612 0.01058 Inf     0.591     0.633

zona = QPr_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.530 0.00767 Inf     0.515     0.545
 1 postQuema     0.531 0.01054 Inf     0.511     0.552

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.02193 0.00519 Inf -4.225  <.0001 

zona = QOt_P:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.01062 0.00737 Inf -1.442  0.1493 

zona = QPr_P:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00106 0.00732 Inf -0.144  0.8853 

Note: contrasts are still on the inverse scale 

MO

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mo ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df         F p.value
1      pre_post_quema 1, 129      1.35    .247
2                zona   2, 9 20.37 ***   <.001
3 pre_post_quema:zona 2, 129      1.04    .357
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mo ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df       F    Pr(>F)    
pre_post_quema           1    129  1.3496 0.2474987    
zona                     2      9 20.3726 0.0004557 ***
pre_post_quema:zona      2    129  1.0383 0.3569810    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      0.244 0.0152 Inf     0.215     0.274
 1 postQuema     0.233 0.0149 Inf     0.203     0.262

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   0.0117 0.0177 Inf 0.660   0.5094 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean     SE  df asymp.LCL asymp.UCL
 QOt_NP  0.194 0.0186 Inf     0.157     0.230
 QOt_P   0.168 0.0176 Inf     0.133     0.202
 QPr_P   0.354 0.0254 Inf     0.305     0.404

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate     SE  df z.ratio p.value
 QOt_NP - QOt_P   0.0261 0.0253 Inf  1.034  0.5556 
 QOt_NP - QPr_P  -0.1608 0.0312 Inf -5.156  <.0001 
 QOt_P - QPr_P   -0.1870 0.0307 Inf -6.084  <.0001 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      0.213 0.0231 Inf     0.168     0.258
 1 postQuema     0.174 0.0206 Inf     0.134     0.215

zona = QOt_P:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      0.170 0.0204 Inf     0.130     0.210
 1 postQuema     0.165 0.0201 Inf     0.126     0.205

zona = QPr_P:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      0.350 0.0330 Inf     0.286     0.415
 1 postQuema     0.359 0.0337 Inf     0.293     0.425

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.03837 0.0233 Inf  1.648  0.0993 

zona = QOt_P:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00480 0.0201 Inf  0.239  0.8111 

zona = QPr_P:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00816 0.0432 Inf -0.189  0.8502 

Note: contrasts are still on the inverse scale 

K

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: k_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df      F p.value
1      pre_post_quema 1, 129   2.19    .141
2                zona   2, 9 6.73 *    .016
3 pre_post_quema:zona 2, 129   0.43    .651
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: k_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F Pr(>F)  
pre_post_quema           1    129 2.1884 0.1415  
zona                     2      9 6.7329 0.0163 *
pre_post_quema:zona      2    129 0.4302 0.6513  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       2.13 0.168 Inf      1.80      2.46
 1 postQuema      2.37 0.173 Inf      2.03      2.71

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.243 0.107 Inf -2.275  0.0229 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean    SE  df asymp.LCL asymp.UCL
 QOt_NP   2.01 0.273 Inf     1.472      2.54
 QOt_P    3.25 0.257 Inf     2.746      3.75
 QPr_P    1.49 0.303 Inf     0.896      2.08

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df z.ratio p.value
 QOt_NP - QOt_P   -1.242 0.372 Inf -3.339  0.0024 
 QOt_NP - QPr_P    0.517 0.406 Inf  1.273  0.4106 
 QOt_P - QPr_P     1.759 0.396 Inf  4.445  <.0001 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       1.99 0.283 Inf     1.438      2.55
 1 postQuema      2.02 0.283 Inf     1.466      2.58

zona = QOt_P:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       2.93 0.276 Inf     2.386      3.47
 1 postQuema      3.57 0.301 Inf     2.982      4.16

zona = QPr_P:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       1.46 0.307 Inf     0.860      2.06
 1 postQuema      1.52 0.308 Inf     0.914      2.12

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0297 0.150 Inf -0.198  0.8433 

zona = QOt_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.6437 0.263 Inf -2.444  0.0145 

zona = QPr_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0556 0.104 Inf -0.536  0.5921 

Note: contrasts are still on the inverse scale 

Mg

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mg_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df      F p.value
1      pre_post_quema 1, 129   1.37    .245
2                zona   2, 9 3.05 +    .097
3 pre_post_quema:zona 2, 129   0.84    .434
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mg_percent ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F  Pr(>F)  
pre_post_quema           1    129 1.3653 0.24477  
zona                     2      9 3.0516 0.09734 .
pre_post_quema:zona      2    129 0.8402 0.43395  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      0.784 0.0807 Inf     0.625     0.942
 1 postQuema     0.749 0.0803 Inf     0.592     0.907

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   0.0345 0.0371 Inf 0.929   0.3528 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean    SE  df asymp.LCL asymp.UCL
 QOt_NP  0.759 0.133 Inf     0.498      1.02
 QOt_P   0.992 0.125 Inf     0.747      1.24
 QPr_P   0.548 0.144 Inf     0.265      0.83

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df z.ratio p.value
 QOt_NP - QOt_P   -0.233 0.181 Inf -1.286  0.4032 
 QOt_NP - QPr_P    0.212 0.196 Inf  1.080  0.5264 
 QOt_P - QPr_P     0.445 0.190 Inf  2.341  0.0504 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema      0.807 0.137 Inf     0.538     1.076
 1 postQuema     0.711 0.135 Inf     0.446     0.977

zona = QOt_P:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema      0.988 0.132 Inf     0.730     1.247
 1 postQuema     0.996 0.132 Inf     0.737     1.255

zona = QPr_P:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema      0.555 0.146 Inf     0.269     0.841
 1 postQuema     0.540 0.146 Inf     0.255     0.826

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.09632 0.0566 Inf  1.702  0.0887 

zona = QOt_P:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00743 0.0841 Inf -0.088  0.9296 

zona = QPr_P:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.01456 0.0461 Inf  0.316  0.7523 

Note: contrasts are still on the inverse scale 

C/N

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: c_n ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df        F p.value
1      pre_post_quema 1, 129  7.82 **    .006
2                zona   2, 9 15.56 **    .001
3 pre_post_quema:zona 2, 129   2.37 +    .098
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: c_n ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df       F   Pr(>F)   
pre_post_quema           1    129  7.8222 0.005951 **
zona                     2      9 15.5645 0.001198 **
pre_post_quema:zona      2    129  2.3682 0.097712 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema     0.0829 0.00412 Inf    0.0748    0.0909
 1 postQuema    0.0913 0.00425 Inf    0.0830    0.0996

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00845 0.00383 Inf -2.206  0.0274 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean      SE  df asymp.LCL asymp.UCL
 QOt_NP 0.0796 0.00627 Inf    0.0673    0.0919
 QOt_P  0.0676 0.00631 Inf    0.0553    0.0800
 QPr_P  0.1140 0.00657 Inf    0.1011    0.1268

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate      SE  df z.ratio p.value
 QOt_NP - QOt_P   0.0120 0.00884 Inf  1.355  0.3648 
 QOt_NP - QPr_P  -0.0343 0.00903 Inf -3.804  0.0004 
 QOt_P - QPr_P   -0.0463 0.00908 Inf -5.101  <.0001 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema     0.0735 0.00672 Inf    0.0603    0.0866
 1 postQuema    0.0858 0.00711 Inf    0.0719    0.0997

zona = QOt_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema     0.0607 0.00659 Inf    0.0478    0.0737
 1 postQuema    0.0746 0.00698 Inf    0.0609    0.0882

zona = QPr_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema     0.1144 0.00785 Inf    0.0990    0.1298
 1 postQuema    0.1136 0.00781 Inf    0.0982    0.1289

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.01236 0.00585 Inf -2.111  0.0348 

zona = QOt_P:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.01382 0.00503 Inf -2.750  0.0060 

zona = QPr_P:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00083 0.00851 Inf  0.097  0.9224 

Note: contrasts are still on the inverse scale 

P

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df       F p.value
1      pre_post_quema 1, 129  3.20 +    .076
2                zona   2, 9  3.81 +    .063
3 pre_post_quema:zona 2, 129 4.88 **    .009
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F   Pr(>F)   
pre_post_quema           1    129 3.2017 0.075909 . 
zona                     2      9 3.8067 0.063389 . 
pre_post_quema:zona      2    129 4.8757 0.009093 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema       1.53 0.0628 Inf      1.40      1.65
 1 postQuema      1.68 0.0588 Inf      1.57      1.80

Results are averaged over the levels of: zona 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.156 0.0744 Inf -2.103  0.0355 

Results are averaged over the levels of: zona 
Results are given on the log (not the response) scale. 
$`emmeans of zona`
 zona   emmean     SE  df asymp.LCL asymp.UCL
 QOt_NP   1.52 0.0844 Inf      1.35      1.69
 QOt_P    1.46 0.0870 Inf      1.29      1.64
 QPr_P    1.83 0.0776 Inf      1.68      1.98

Results are averaged over the levels of: pre_post_quema 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df z.ratio p.value
 QOt_NP - QOt_P   0.0548 0.121 Inf  0.451  0.8938 
 QOt_NP - QPr_P  -0.3116 0.114 Inf -2.734  0.0172 
 QOt_P - QPr_P   -0.3664 0.116 Inf -3.147  0.0047 

Results are averaged over the levels of: pre_post_quema 
Results are given on the log (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema       1.34 0.1122 Inf      1.12      1.56
 1 postQuema      1.70 0.0998 Inf      1.50      1.90

zona = QOt_P:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema       1.34 0.1165 Inf      1.11      1.57
 1 postQuema      1.59 0.1053 Inf      1.38      1.79

zona = QPr_P:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema       1.90 0.0936 Inf      1.72      2.08
 1 postQuema      1.76 0.0989 Inf      1.57      1.96

Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.361 0.129 Inf -2.808  0.0050 

zona = QOt_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.247 0.138 Inf -1.790  0.0734 

zona = QPr_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema    0.139 0.114 Inf  1.217  0.2235 

Results are given on the log (not the response) scale. 

N

Model

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df lower.CL upper.CL
 0 preQuema      -1.31 0.0710 136    -1.45   -1.171
 1 postQuema     -1.10 0.0678 136    -1.24   -0.968

Results are averaged over the levels of: zona 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate     SE  df t.ratio p.value
 0 preQuema - 1 postQuema    -0.21 0.0968 136 -2.170  0.0318 

Results are averaged over the levels of: zona 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of zona`
 zona   emmean     SE  df lower.CL upper.CL
 QOt_NP  -1.11 0.0827 136    -1.27   -0.947
 QOt_P   -1.12 0.0828 136    -1.28   -0.953
 QPr_P   -1.39 0.0882 136    -1.57   -1.219

Results are averaged over the levels of: pre_post_quema 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df t.ratio p.value
 QOt_NP - QOt_P  0.00552 0.116 136 0.048   0.9988 
 QOt_NP - QPr_P  0.28266 0.120 136 2.362   0.0510 
 QOt_P - QPr_P   0.27714 0.120 136 2.315   0.0571 

Results are averaged over the levels of: pre_post_quema 
Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema     -1.282 0.121 136    -1.52   -1.043
 1 postQuema    -0.940 0.112 136    -1.16   -0.718

zona = QOt_P:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema     -1.269 0.120 136    -1.51   -1.031
 1 postQuema    -0.964 0.113 136    -1.19   -0.741

zona = QPr_P:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema     -1.384 0.124 136    -1.63   -1.140
 1 postQuema    -1.403 0.124 136    -1.65   -1.157

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema  -0.3425 0.164 136 -2.086  0.0388 

zona = QOt_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema  -0.3055 0.164 136 -1.860  0.0650 

zona = QPr_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0182 0.174 136  0.104  0.9171 

Results are given on the log odds ratio (not the response) scale. 

Na

Model

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df lower.CL upper.CL
 0 preQuema      -3.00 0.0916 136    -3.18    -2.82
 1 postQuema     -3.08 0.0934 136    -3.26    -2.90

Results are averaged over the levels of: zona 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate     SE  df t.ratio p.value
 0 preQuema - 1 postQuema    0.082 0.0891 136 0.920   0.3593 

Results are averaged over the levels of: zona 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of zona`
 zona   emmean    SE  df lower.CL upper.CL
 QOt_NP  -2.88 0.134 136    -3.15    -2.61
 QOt_P   -3.43 0.146 136    -3.72    -3.15
 QPr_P   -2.80 0.133 136    -3.07    -2.54

Results are averaged over the levels of: pre_post_quema 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df t.ratio p.value
 QOt_NP - QOt_P   0.5523 0.196 136  2.816  0.0153 
 QOt_NP - QPr_P  -0.0772 0.188 136 -0.411  0.9113 
 QOt_P - QPr_P   -0.6295 0.195 136 -3.224  0.0045 

Results are averaged over the levels of: pre_post_quema 
Results are given on the log odds ratio (not the response) scale. 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema      -2.86 0.152 136    -3.16    -2.56
 1 postQuema     -2.91 0.154 136    -3.21    -2.60

zona = QOt_P:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema      -3.36 0.168 136    -3.69    -3.03
 1 postQuema     -3.51 0.173 136    -3.85    -3.17

zona = QPr_P:
 pre_post_quema emmean    SE  df lower.CL upper.CL
 0 preQuema      -2.78 0.150 136    -3.08    -2.48
 1 postQuema     -2.83 0.151 136    -3.13    -2.53

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0499 0.144 136 0.345   0.7303 

zona = QOt_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.1486 0.177 136 0.837   0.4039 

zona = QPr_P:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0475 0.139 136 0.343   0.7321 

Results are given on the log odds ratio (not the response) scale. 

pH agua

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_agua_eez ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df       F p.value
1      pre_post_quema 1, 129    0.01    .928
2                zona   2, 9  4.64 *    .041
3 pre_post_quema:zona 2, 129 5.20 **    .007
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_agua_eez ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F   Pr(>F)   
pre_post_quema           1    129 0.0083 0.927741   
zona                     2      9 4.6444 0.041140 * 
pre_post_quema:zona      2    129 5.2024 0.006716 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean        SE  df asymp.LCL asymp.UCL
 0 preQuema     0.1255 0.0002922 Inf    0.1249    0.1261
 1 postQuema    0.1255 0.0002926 Inf    0.1250    0.1261

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema -4.66e-05 0.000375 Inf -0.124  0.9012 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean       SE  df asymp.LCL asymp.UCL
 QOt_NP  0.126 0.000389 Inf     0.125     0.127
 QOt_P   0.126 0.000389 Inf     0.125     0.127
 QPr_P   0.125 0.000387 Inf     0.124     0.125

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate       SE  df z.ratio p.value
 QOt_NP - QOt_P 0.000164 0.000550 Inf 0.299   0.9519 
 QOt_NP - QPr_P 0.001311 0.000548 Inf 2.393   0.0441 
 QOt_P - QPr_P  0.001147 0.000549 Inf 2.090   0.0920 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema      0.126 0.000503 Inf     0.125     0.127
 1 postQuema     0.126 0.000509 Inf     0.125     0.127

zona = QOt_P:
 pre_post_quema emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema      0.125 0.000506 Inf     0.124     0.126
 1 postQuema     0.126 0.000509 Inf     0.125     0.127

zona = QPr_P:
 pre_post_quema emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema      0.126 0.000507 Inf     0.125     0.127
 1 postQuema     0.124 0.000501 Inf     0.123     0.125

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.000834 0.000649 Inf -1.285  0.1989 

zona = QOt_P:
 2                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.001003 0.000652 Inf -1.539  0.1238 

zona = QPr_P:
 2                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.001697 0.000646 Inf  2.628  0.0086 

Note: contrasts are still on the inverse scale 

pH KCl

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_k_cl ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect     df         F p.value
1      pre_post_quema 1, 129 37.25 ***   <.001
2                zona   2, 9      2.57    .131
3 pre_post_quema:zona 2, 129   6.18 **    .003
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_k_cl ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df den Df      F    Pr(>F)    
pre_post_quema           1    129 37.246 1.133e-08 ***
zona                     2      9  2.573  0.130687    
pre_post_quema:zona      2    129  6.183  0.002728 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema      0.134 0.000592 Inf     0.133     0.135
 1 postQuema     0.131 0.000591 Inf     0.130     0.133

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00224 0.000359 Inf 6.253   <.0001 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean       SE  df asymp.LCL asymp.UCL
 QOt_NP  0.133 0.000973 Inf     0.131     0.135
 QOt_P   0.133 0.000974 Inf     0.131     0.135
 QPr_P   0.131 0.000980 Inf     0.129     0.133

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate      SE  df z.ratio p.value
 QOt_NP - QOt_P 9.55e-05 0.00138 Inf 0.069   0.9973 
 QOt_NP - QPr_P 2.21e-03 0.00138 Inf 1.603   0.2444 
 QOt_P - QPr_P  2.12e-03 0.00138 Inf 1.533   0.2755 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
P value adjustment: tukey method for comparing a family of 3 estimates 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.134 0.00102 Inf     0.132     0.136
 1 postQuema     0.133 0.00102 Inf     0.131     0.135

zona = QOt_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.134 0.00102 Inf     0.132     0.136
 1 postQuema     0.132 0.00102 Inf     0.130     0.134

zona = QPr_P:
 pre_post_quema emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema      0.133 0.00103 Inf     0.131     0.135
 1 postQuema     0.129 0.00102 Inf     0.127     0.131

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema 0.000697 0.000624 Inf 1.116   0.2644 

zona = QOt_P:
 2                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema 0.002241 0.000624 Inf 3.588   0.0003 

zona = QPr_P:
 2                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema 0.003792 0.000614 Inf 6.173   <.0001 

Note: contrasts are still on the inverse scale 

NH4

  • prepara datos
              zona
pre_post_quema QOt_NP QOt_P
   0 preQuema      24    24
   1 postQuema     21    22

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: n_nh4 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect       df         F p.value
1      pre_post_quema 1, 81.31 42.84 ***   <.001
2                zona  1, 6.01      2.19    .189
3 pre_post_quema:zona 1, 81.31      2.53    .115
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: n_nh4 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df  den Df       F    Pr(>F)    
pre_post_quema           1 81.3060 42.8372 4.956e-09 ***
zona                     1  6.0102  2.1923    0.1891    
pre_post_quema:zona      1 81.3060  2.5343    0.1153    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      1.636 0.1547 Inf     1.332     1.939
 1 postQuema     0.383 0.0587 Inf     0.268     0.498

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema     1.25 0.153 Inf 8.158   <.0001 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean    SE  df asymp.LCL asymp.UCL
 QOt_NP  0.996 0.125 Inf     0.752      1.24
 QOt_P   1.023 0.123 Inf     0.783      1.26

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df z.ratio p.value
 QOt_NP - QOt_P  -0.0273 0.173 Inf -0.158  0.8748 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      1.682 0.2245 Inf     1.242     2.122
 1 postQuema     0.310 0.0708 Inf     0.171     0.449

zona = QOt_P:
 pre_post_quema emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema      1.589 0.2121 Inf     1.174     2.005
 1 postQuema     0.457 0.0878 Inf     0.285     0.629

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema     1.37 0.221 Inf 6.214   <.0001 

zona = QOt_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema     1.13 0.213 Inf 5.324   <.0001 

Note: contrasts are still on the inverse scale 

NO3

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: n_no3 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
               Effect       df    F p.value
1      pre_post_quema 1, 81.11 0.93    .339
2                zona  1, 6.01 0.22    .658
3 pre_post_quema:zona 1, 81.11 0.25    .619
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: n_no3 ~ pre_post_quema * zona + (1 | zona:geo_parcela_nombre)
Data: df_model
                    num Df  den Df      F Pr(>F)
pre_post_quema           1 81.1146 0.9263 0.3387
zona                     1  6.0094 0.2164 0.6581
pre_post_quema:zona      1 81.1146 0.2492 0.6190

Post-hoc

$`emmeans of pre_post_quema`
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       1.17 0.137 Inf     0.899      1.44
 1 postQuema      1.28 0.144 Inf     1.001      1.57

Results are averaged over the levels of: zona 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema`
 1                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.116 0.116 Inf -1.004  0.3155 

Results are averaged over the levels of: zona 
Note: contrasts are still on the inverse scale 
$`emmeans of zona`
 zona   emmean    SE  df asymp.LCL asymp.UCL
 QOt_NP   1.29 0.181 Inf     0.934      1.64
 QOt_P    1.16 0.175 Inf     0.819      1.50

Results are averaged over the levels of: pre_post_quema 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of zona`
 1              estimate    SE  df z.ratio p.value
 QOt_NP - QOt_P    0.127 0.247 Inf 0.513   0.6078 

Results are averaged over the levels of: pre_post_quema 
Note: contrasts are still on the inverse scale 
$`emmeans of pre_post_quema | zona`
zona = QOt_NP:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       1.26 0.196 Inf     0.874      1.64
 1 postQuema      1.32 0.204 Inf     0.920      1.72

zona = QOt_P:
 pre_post_quema emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema       1.08 0.185 Inf     0.713      1.44
 1 postQuema      1.25 0.198 Inf     0.859      1.64

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of pre_post_quema | zona`
zona = QOt_NP:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0616 0.170 Inf -0.362  0.7170 

zona = QOt_P:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.1710 0.157 Inf -1.086  0.2775 

Note: contrasts are still on the inverse scale 

General Overview

Mean + SE table

Characteristic 0 preQuema 1 postQuema
QOt_NP, N = 241 QOt_P, N = 241 QPr_P, N = 241 QOt_NP, N = 241 QOt_P, N = 241 QPr_P, N = 241
humedad 11.99 (0.76) 12.45 (0.66) 15.62 (0.63) 12.86 (0.86) 11.39 (0.79) 8.11 (0.53)
n_nh4 0.60 (0.05) 0.63 (0.05) NA (NA) 3.42 (0.57) 2.44 (0.45) NA (NA)
n_no3 0.85 (0.11) 0.98 (0.08) NA (NA) 0.81 (0.12) 0.82 (0.08) NA (NA)
fe_percent 1.97 (0.08) 1.76 (0.12) 1.95 (0.08) 1.89 (0.04) 1.72 (0.07) 1.95 (0.09)
k_percent 0.55 (0.04) 0.35 (0.03) 0.79 (0.06) 0.54 (0.03) 0.29 (0.02) 0.75 (0.06)
mg_percent 1.46 (0.15) 1.11 (0.09) 2.00 (0.14) 1.74 (0.21) 1.10 (0.07) 2.06 (0.18)
na_percent 0.05 (0.01) 0.03 (0.00) 0.06 (0.01) 0.05 (0.00) 0.03 (0.00) 0.06 (0.01)
n_percent 0.22 (0.02) 0.21 (0.02) 0.19 (0.02) 0.30 (0.04) 0.28 (0.03) 0.18 (0.01)
c_percent 6.50 (0.33) 7.94 (0.46) 7.05 (0.31) 7.27 (0.42) 8.73 (0.35) 7.57 (0.38)
c_n 13.96 (0.89) 16.77 (0.87) 8.81 (1.03) 11.88 (0.72) 13.59 (0.74) 8.87 (0.22)
cic 15.67 (0.38) 17.54 (0.49) 13.17 (0.49) 15.08 (0.36) 15.58 (0.47) 12.92 (0.55)
p 3.83 (0.23) 3.84 (0.24) 6.75 (0.92) 5.50 (0.33) 4.91 (0.35) 5.88 (0.25)
mo 4.77 (0.39) 5.97 (0.44) 2.87 (0.32) 5.86 (0.65) 6.15 (0.46) 2.80 (0.16)
p_h_k_cl 7.48 (0.02) 7.44 (0.03) 7.52 (0.04) 7.52 (0.03) 7.57 (0.03) 7.74 (0.03)
p_h_agua_eez 7.96 (0.03) 7.98 (0.03) 7.97 (0.04) 7.91 (0.02) 7.92 (0.03) 8.07 (0.02)

1 Mean (std.error)

Figures

Version Author Date
71c36dd ajpelu 2021-09-10
46f8fd8 ajpelu 2021-09-07

Version Author Date
71c36dd ajpelu 2021-09-10

Version Author Date
eadc8da ajpelu 2021-09-14
71c36dd ajpelu 2021-09-10

Anovas table

zona
fecha
zona X fecha
Variables F p F p F p
c_n 15.564 0.001 7.822 0.006 2.368 0.098
cic 5.660 0.026 8.757 0.004 2.764 0.067
k_percent 6.733 0.016 2.188 0.141 0.430 0.651
mg_percent 3.052 0.097 1.365 0.245 0.840 0.434
mo 20.373 0.000 1.350 0.247 1.038 0.357
n_nh4 2.192 0.189 42.837 0.000 2.534 0.115
n_no3 0.216 0.658 0.926 0.339 0.249 0.619
p 3.807 0.063 3.202 0.076 4.876 0.009
p_h_agua_eez 4.644 0.041 0.008 0.928 5.202 0.007
p_h_k_cl 2.573 0.131 37.246 0.000 6.183 0.003
humedad 0.080 0.923 26.105 0.000 25.519 0.000
n_percent 7.301 0.026 5.122 0.024 2.697 0.260
c_percent 1.236 0.335 7.877 0.006 0.131 0.878
na_percent 11.955 0.003 0.697 0.404 0.241 0.887

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.1   gtsummary_1.4.2    plotrix_3.8-1      glmmTMB_1.0.2.1   
 [5] afex_0.28-1        performance_0.8.0  multcomp_1.4-16    TH.data_1.0-10    
 [9] mvtnorm_1.1-1      emmeans_1.5.4      lmerTest_3.1-3     lme4_1.1-27.1     
[13] Matrix_1.3-2       fitdistrplus_1.1-3 survival_3.2-7     MASS_7.3-53       
[17] ggpubr_0.4.0       janitor_2.1.0      here_1.0.1         forcats_0.5.1     
[21] stringr_1.4.0      dplyr_1.0.6        purrr_0.3.4        readr_1.4.0       
[25] tidyr_1.1.3        tibble_3.1.2       ggplot2_3.3.5      tidyverse_1.3.1   
[29] rmdformats_1.0.1   knitr_1.31         workflowr_1.7.0   

loaded via a namespace (and not attached):
  [1] minqa_1.2.4         colorspace_2.0-2    ggsignif_0.6.0     
  [4] ellipsis_0.3.2      rio_0.5.16          rprojroot_2.0.2    
  [7] estimability_1.3    snakecase_0.11.0    fs_1.5.0           
 [10] rstudioapi_0.13     farver_2.1.0        fansi_0.4.2        
 [13] lubridate_1.7.10    xml2_1.3.2          codetools_0.2-18   
 [16] splines_4.0.2       jsonlite_1.7.2      nloptr_1.2.2.2     
 [19] gt_0.3.0            pbkrtest_0.5-0.1    broom_0.7.9        
 [22] dbplyr_2.1.1        compiler_4.0.2      httr_1.4.2         
 [25] backports_1.2.1     assertthat_0.2.1    fastmap_1.1.0      
 [28] cli_2.5.0           formatR_1.8         later_1.1.0.1      
 [31] htmltools_0.5.2     tools_4.0.2         coda_0.19-4        
 [34] gtable_0.3.0        glue_1.4.2          reshape2_1.4.4     
 [37] Rcpp_1.0.7          carData_3.0-4       cellranger_1.1.0   
 [40] jquerylib_0.1.3     vctrs_0.3.8         nlme_3.1-152       
 [43] broom.helpers_1.4.0 insight_0.14.4      xfun_0.23          
 [46] ps_1.5.0            openxlsx_4.2.3      rvest_1.0.0        
 [49] lifecycle_1.0.1     rstatix_0.6.0       zoo_1.8-8          
 [52] getPass_0.2-2       scales_1.1.1.9000   hms_1.0.0          
 [55] promises_1.2.0.1    parallel_4.0.2      sandwich_3.0-0     
 [58] TMB_1.7.19          yaml_2.2.1          curl_4.3           
 [61] sass_0.3.1          stringi_1.7.4       highr_0.8          
 [64] checkmate_2.0.0     boot_1.3-26         zip_2.1.1          
 [67] commonmark_1.7      rlang_0.4.12        pkgconfig_2.0.3    
 [70] evaluate_0.14       lattice_0.20-41     labeling_0.4.2     
 [73] processx_3.5.1      tidyselect_1.1.1    plyr_1.8.6         
 [76] magrittr_2.0.1      bookdown_0.21.6     R6_2.5.1           
 [79] generics_0.1.0      DBI_1.1.1           pillar_1.6.1       
 [82] haven_2.3.1         whisker_0.4         foreign_0.8-81     
 [85] withr_2.4.1         abind_1.4-5         modelr_0.1.8       
 [88] crayon_1.4.1        car_3.0-10          utf8_1.1.4         
 [91] rmarkdown_2.8       grid_4.0.2          readxl_1.3.1       
 [94] data.table_1.14.0   callr_3.7.0         git2r_0.28.0       
 [97] webshot_0.5.2       reprex_2.0.0        digest_0.6.27      
[100] xtable_1.8-4       
 [ reached getOption("max.print") -- omitted 5 entries ]