Last updated: 2023-02-20
Checks: 7 0
Knit directory: dwc_o2p/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230220)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 7e65dea. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: data/dwc_db/
Untracked: data/raw/
Unstaged changes:
Modified: .DS_Store
Deleted: data_raw/dic_var.csv
Deleted: data_raw/suelos_v2.xlsx
Modified: scripts/prepara_dwc_o2p_suelo.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/prepara_dwc_o2p_quadrats.Rmd
) and HTML
(docs/prepara_dwc_o2p_quadrats.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 7e65dea | ajpelu | 2023-02-20 | add quadrats |
Hemos ejecutado la siguientes consultas en la base de datos :
CONSULTAS_ALTURA/ALTURA_MAX_PROMEDIO_QUADRAT
SELECT ALT_MAX_PROMEDIO_INT.ZONA,
ALT_MAX_PROMEDIO_INT.PARCELA,
ALT_MAX_PROMEDIO_INT.QUADRAT,
ALT_MAX_PROMEDIO_INT.FECHA,
Sum(ALT_MAX_PROMEDIO_INT.ALT_REL) AS ALT_PROM,
ALT_MAX_PROMEDIO_INT.FACTOR_CORREC_INFOCA,
[ALT_PROM]*[FACTOR_CORREC_INFOCA]/2 AS ALT_CORR
FROM ALT_MAX_PROMEDIO_INT
GROUP BY ALT_MAX_PROMEDIO_INT.ZONA,
ALT_MAX_PROMEDIO_INT.PARCELA,
ALT_MAX_PROMEDIO_INT.QUADRAT,
ALT_MAX_PROMEDIO_INT.FECHA,
ALT_MAX_PROMEDIO_INT.FACTOR_CORREC_INFOCA;
El resultado lo hemos guardado en el archivo ALTURA_MAX_PROMEDIO_QUADRAT.xlsx
que está en la ruta
data/raw/ALTURA_MAX_PROMEDIO_QUADRAT.xlsx
CONSULTAS_ALTURA/ALTURA_MODA_PROMEDIO_QUADRAT
SELECT ALT_MODA_PROMEDIO_INT.ZONA,
ALT_MODA_PROMEDIO_INT.PARCELA,
ALT_MODA_PROMEDIO_INT.QUADRAT,
ALT_MODA_PROMEDIO_INT.FECHA,
Avg(ALT_MODA_PROMEDIO_INT.ALT_REL) AS ALTURA_PROMEDIO,
ALT_MODA_PROMEDIO_INT.FACTOR_CORREC_INFOCA,
[ALTURA_PROMEDIO]*[FACTOR_CORREC_INFOCA]/2 AS ALT_CORR
FROM ALT_MODA_PROMEDIO_INT
GROUP BY ALT_MODA_PROMEDIO_INT.ZONA,
ALT_MODA_PROMEDIO_INT.PARCELA,
ALT_MODA_PROMEDIO_INT.QUADRAT,
ALT_MODA_PROMEDIO_INT.FECHA,
ALT_MODA_PROMEDIO_INT.FACTOR_CORREC_INFOCA;
El resultado lo hemos guardado en el archivo ALTURA_MODA_PROMEDIO_QUADRAT.xlsx
que está en la ruta
data/raw/ALTURA_MODA_PROMEDIO_QUADRAT.xlsx
CONSULTAS_DESNUDO/DESNUDO_QUADRAT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
GEO_QUADRAT.RANGO_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
TAB_VISITA_EVAL_VEG_QUAD.COB_DESNUDO AS DESNUDO
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN (GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO
WHERE (((DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS)<>#10/9/2019#));
El resultado lo hemos guardado en el archivo DESNUDO_QUADRAT.xlsx
que está en la ruta data/raw/DESNUDO_QUADRAT.xlsx
CONSULTAS_DIVERSIDAD/DIVERSIDAD_QUADRAT
SELECT DIVERSIDAD_QUADRAT_INT.ZONA,
DIVERSIDAD_QUADRAT_INT.PARCELA,
DIVERSIDAD_QUADRAT_INT.QUADRAT,
DIVERSIDAD_QUADRAT_INT.RANGO_INFOCA,
DIVERSIDAD_QUADRAT_INT.FACTOR_CORREC_INFOCA,
DIVERSIDAD_QUADRAT_INT.FECHA_MUESTREOS,
Sum(DIVERSIDAD_QUADRAT_INT.PI_LNPI) AS I_SHANNON
FROM DIVERSIDAD_QUADRAT_INT
GROUP BY DIVERSIDAD_QUADRAT_INT.ZONA,
DIVERSIDAD_QUADRAT_INT.PARCELA,
DIVERSIDAD_QUADRAT_INT.QUADRAT,
DIVERSIDAD_QUADRAT_INT.RANGO_INFOCA,
DIVERSIDAD_QUADRAT_INT.FACTOR_CORREC_INFOCA,
DIVERSIDAD_QUADRAT_INT.FECHA_MUESTREOS;
El resultado lo hemos guardado en el archivo DIVERSIDAD_QUADRAT.xlsx
que está en la ruta data/raw/DIVERSIDAD_QUADRAT.xlsx
CONSULTAS_FITOVOLUMEN/FITOVOL_TOTAL_QUADRAT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
Sum([EVAL_VEG_QUADRAT_SP]![COBERTURA]*[EVAL_VEG_QUADRAT_SP]![ALTURA_MOD]) AS FITOVOL
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN ((GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA)
INNER JOIN (DICC_ESPECIES
INNER JOIN EVAL_VEG_QUADRAT_SP ON DICC_ESPECIES.ID_ESPECIE = EVAL_VEG_QUADRAT_SP.COD_ESPECIE) ON TAB_VISITA_EVAL_VEG_QUAD.ID_VISITA_QUADRAT = EVAL_VEG_QUADRAT_SP.Cod_visita_quadrat) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO
GROUP BY GEO_ZONA.Nombre_zona,
GEO_PARCELA.NOMBRE,
GEO_QUADRAT.NOMBRE,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS
HAVING (((DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS)<>#10/9/2019#));
El resultado lo hemos guardado en el archivo FITOVOL_TOTAL_QUADRAT.xlsx
que está en la ruta data/raw/FITOVOL_TOTAL_QUADRAT.xlsx
CONSULTAS_MANTILLO/MANTILLO_QUADRAT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
GEO_QUADRAT.RANGO_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
TAB_VISITA_EVAL_VEG_QUAD.COB_MANTILLO AS MANTILLO
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN (GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO
WHERE (((DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS)<>#10/9/2019#));
El resultado lo hemos guardado en el archivo MANTILLO_QUADRAT.xlsx
que está en la ruta data/raw/MANTILLO_QUADRAT.xlsx
CONSULTAS_RECUBRIMIENTO_TOTAL/REC_TOTAL_QUADRAT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
GEO_QUADRAT.RANGO_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
TAB_VISITA_EVAL_VEG_QUAD.COB_TOTAL,
GEO_QUADRAT.FACTOR_CORREC_INFOCA
FROM GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN (DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO) ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA
WHERE (((DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS)<>#10/9/2019#));
El resultado lo hemos guardado en el archivo REC_TOTAL_QUADRAT.xlsx
que está en la ruta data/raw/REC_TOTAL_QUADRAT.xlsx
CONSULTAS_RECUBRIMIENTO_VEGETAL/REC_VEG_QUADRAT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
Sum(EVAL_VEG_QUADRAT_SP.COBERTURA) AS REC_VEG,
EVAL_VEG_QUADRAT_SP.MUERTA
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN ((GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA)
INNER JOIN EVAL_VEG_QUADRAT_SP ON TAB_VISITA_EVAL_VEG_QUAD.ID_VISITA_QUADRAT = EVAL_VEG_QUADRAT_SP.Cod_visita_quadrat) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO
GROUP BY GEO_ZONA.Nombre_zona,
GEO_PARCELA.NOMBRE,
GEO_QUADRAT.NOMBRE,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
EVAL_VEG_QUADRAT_SP.MUERTA
HAVING (((DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS)<>#10/9/2019#)
AND ((EVAL_VEG_QUADRAT_SP.MUERTA)=FALSE));
El resultado lo hemos guardado en el archivo REC_VEG_QUADRAT.xlsx
que está en la ruta data/raw/REC_VEG_QUADRAT.xlsx
CONSULTAS_RIQUEZA/RIQUEZA_QUADRAT
SELECT GEO_ZONA.Nombre_zona,
GEO_PARCELA.NOMBRE,
GEO_QUADRAT.NOMBRE,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
Count(GEO_QUADRAT.NOMBRE) AS RIQUEZA,
[RIQUEZA]*[FACTOR_CORREC_INFOCA] AS RIQUEZA_COR
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN ((GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN TAB_VISITA_EVAL_VEG_QUAD ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_VEG_QUAD.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA)
INNER JOIN (DICC_ESPECIES
INNER JOIN EVAL_VEG_QUADRAT_SP ON DICC_ESPECIES.ID_ESPECIE = EVAL_VEG_QUADRAT_SP.COD_ESPECIE) ON TAB_VISITA_EVAL_VEG_QUAD.ID_VISITA_QUADRAT = EVAL_VEG_QUADRAT_SP.Cod_visita_quadrat) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_VEG_QUAD.COD_FECHA_MUESTREO
GROUP BY GEO_ZONA.Nombre_zona,
GEO_PARCELA.NOMBRE,
GEO_QUADRAT.NOMBRE,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS;
El resultado lo hemos guardado en el archivo RIQUEZA_QUADRAT.xlsx
que está en la ruta data/raw/RIQUEZA_QUADRAT.xlsx
CONSULTAS_SEVERIDAD_QUEMA/SEV_QUEMA_QUAD_TOT
SELECT GEO_ZONA.Nombre_zona AS ZONA,
GEO_PARCELA.NOMBRE AS PARCELA,
GEO_QUADRAT.NOMBRE AS QUADRAT,
DICC_FECHA_MUESTREOS_VEGE_OVEJA.FECHA_MUESTREOS,
GEO_QUADRAT.RANGO_INFOCA,
GEO_QUADRAT.FACTOR_CORREC_INFOCA,
TAB_VISITA_EVAL_QUEMA.PORC_SOFLAMADO,
TAB_VISITA_EVAL_QUEMA.PORC_QUEMADO,
DICC_RANGO_QUEMA.RANGO AS RANGO_QUEMA
FROM DICC_FECHA_MUESTREOS_VEGE_OVEJA
INNER JOIN (GEO_ZONA
INNER JOIN ((GEO_PARCELA
INNER JOIN GEO_QUADRAT ON GEO_PARCELA.OBJECTID_1 = GEO_QUADRAT.COD_PARCELA)
INNER JOIN (DICC_RANGO_QUEMA
INNER JOIN TAB_VISITA_EVAL_QUEMA ON DICC_RANGO_QUEMA.ID_RANGO_QUEMA = TAB_VISITA_EVAL_QUEMA.COD_RANGO_QUEMA) ON GEO_QUADRAT.OBJECTID = TAB_VISITA_EVAL_QUEMA.COD_QUADRAT) ON GEO_ZONA.OBJECTID = GEO_PARCELA.COD_ZONA) ON DICC_FECHA_MUESTREOS_VEGE_OVEJA.ID_FECHA_MUESTREOS_VEG = TAB_VISITA_EVAL_QUEMA.COD_FECHA_MUESTREO;
El resultado lo hemos guardado en el archivo SEV_QUEMA_QUAD_TOT.xlsx
que está en la ruta data/raw/SEV_QUEMA_QUAD_TOT.xlsx
CONSULTAS_TASA_DE_CONSUMO/TASA_CONSUMO_PROMEDIO_QUADRAT
SELECT TASA_CONSUMO_SP_QUADRAT.Nombre_zona AS ZONA,
TASA_CONSUMO_SP_QUADRAT.GEO_PARCELA.NOMBRE AS PARCELA,
TASA_CONSUMO_SP_QUADRAT.GEO_QUADRAT.NOMBRE AS QUADRAT,
TASA_CONSUMO_SP_QUADRAT.FACTOR_CORREC_INFOCA,
TASA_CONSUMO_SP_QUADRAT.FECHA_MUESTREOS,
Sum([TASA_CONSUMO_SP_QUADRAT]![TASA_CONSUMO]*[TASA_CONSUMO_SP_QUADRAT]![COBERTURA]/[REC_VEG_QUADRAT]![REC_VEG]) AS TASA_CONSUMO
FROM TASA_CONSUMO_SP_QUADRAT
INNER JOIN REC_VEG_QUADRAT ON (TASA_CONSUMO_SP_QUADRAT.FECHA_MUESTREOS = REC_VEG_QUADRAT.FECHA_MUESTREOS)
AND (TASA_CONSUMO_SP_QUADRAT.GEO_QUADRAT.NOMBRE = REC_VEG_QUADRAT.QUADRAT)
GROUP BY TASA_CONSUMO_SP_QUADRAT.Nombre_zona,
TASA_CONSUMO_SP_QUADRAT.GEO_PARCELA.NOMBRE,
TASA_CONSUMO_SP_QUADRAT.GEO_QUADRAT.NOMBRE,
TASA_CONSUMO_SP_QUADRAT.FACTOR_CORREC_INFOCA,
TASA_CONSUMO_SP_QUADRAT.FECHA_MUESTREOS;
El resultado lo hemos guardado en el archivo TASA_CONSUMO_PROMEDIO_QUADRAT.xlsx
que está en la ruta
data/raw/TASA_CONSUMO_PROMEDIO_QUADRAT.xlsx
library(tidyverse) # Easily Install and Load the 'Tidyverse'
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0 ✔ purrr 0.3.5
✔ tibble 3.1.8 ✔ dplyr 1.0.10
✔ tidyr 1.2.1 ✔ stringr 1.4.1
✔ readr 2.1.3 ✔ forcats 0.5.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(here) # A Simpler Way to Find Your Files
here() starts at /Users/ajpelu/SERPAM Dropbox/14_GBIF/01_O2P/dwc_o2p
library(janitor) # Simple Tools for Examining and Cleaning Dirty Data
Attaching package: 'janitor'
The following objects are masked from 'package:stats':
chisq.test, fisher.test
dicc_variables <- read.csv(here::here("data/raw/dic_var.csv"), sep = ";",
encoding = 'UTF-8') |>
rename(measurementType = name_var,
measurementUnit = units,
measurementMethod = methods,
measurementRemarks = url_controlled)
files <- list.files(path = here::here("data/raw/quadrats/"),
pattern = "*.xlsx",
full.names = FALSE)
Genera una función para formatear todos los excels y dejarlos con un formato parecido a DwC emof
files |>
purrr::map(function(filename){
aux <- readxl::read_excel(here::here("data/raw/quadrats/", basename(filename))) |>
janitor::clean_names() |>
rename_with(
~ case_when(
. == "fecha" ~ "fecha_muestreos",
. == "nombre_zona" ~ "zona",
. == "geo_quadrat_nombre" ~ "quadrat",
. == "geo_parcela_nombre" ~ "parcela",
TRUE ~ .))
aux_event <- aux |>
dplyr::select(-contains("correc"),
-contains("cor"),
-contains("muerta"),
-contains("rango_infoca")) |>
mutate(
treatment_name = case_when(
zona == "Quemado con pastoreo" ~ "QOP",
zona == "Quemado sin pastoreo" ~ "QONP",
zona == "Quemado primavera" ~ "QPP")) |>
mutate(date = gsub("-","",fecha_muestreos)) |>
unite("eventID", c(quadrat, date), remove = FALSE) |>
rename(measurementDeterminedDate = date) |>
dplyr::select(-zona, -parcela, -fecha_muestreos) |>
pivot_longer(-c(eventID, quadrat, measurementDeterminedDate, treatment_name)) |>
dplyr::select(-quadrat, -treatment_name) |>
rename(measurementValue = value)
assign(x = tolower(str_remove(filename, ".xlsx")),
value = aux_event,
envir = .GlobalEnv)
})
[[1]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 alt_prom 41.2
2 P04Q1_20190604 20190604 alt_prom 10.8
3 P04Q1_20191218 20191218 alt_prom 23.9
4 P04Q1_20200519 20200519 alt_prom 19.5
5 P04Q1_20201117 20201117 alt_prom 19.8
6 P04Q1_20210519 20210519 alt_prom 28.6
7 P04Q2_20181121 20181121 alt_prom 67.4
8 P04Q2_20190604 20190604 alt_prom 24.7
9 P04Q2_20191218 20191218 alt_prom 89.9
10 P04Q2_20200519 20200519 alt_prom 40.0
# … with 534 more rows
[[2]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 altura_promedio 3.88
2 P04Q1_20190604 20190604 altura_promedio 0.452
3 P04Q1_20191218 20191218 altura_promedio 0.723
4 P04Q1_20200519 20200519 altura_promedio 0.607
5 P04Q1_20201117 20201117 altura_promedio 1.05
6 P04Q1_20210519 20210519 altura_promedio 1.78
7 P04Q2_20181121 20181121 altura_promedio 6.91
8 P04Q2_20190604 20190604 altura_promedio 0.947
9 P04Q2_20191218 20191218 altura_promedio 0.681
10 P04Q2_20200519 20200519 altura_promedio 0.793
# … with 534 more rows
[[3]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 desnudo 60
2 P04Q1_20190604 20190604 desnudo 70
3 P04Q1_20191218 20191218 desnudo 12
4 P04Q1_20200519 20200519 desnudo 83
5 P04Q1_20201117 20201117 desnudo 82
6 P04Q1_20210519 20210519 desnudo 65
7 P04Q2_20181121 20181121 desnudo 7
8 P04Q2_20190604 20190604 desnudo 15
9 P04Q2_20191218 20191218 desnudo 60
10 P04Q2_20200519 20200519 desnudo 38
# … with 534 more rows
[[4]]
# A tibble: 539 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 NP07Q1_20181121 20181121 i_shannon -1.57
2 NP07Q1_20190604 20190604 i_shannon -2.07
3 NP07Q1_20191218 20191218 i_shannon -1.99
4 NP07Q1_20200519 20200519 i_shannon -2.21
5 NP07Q1_20201117 20201117 i_shannon -2.09
6 NP07Q1_20210519 20210519 i_shannon -1.95
7 NP07Q2_20181121 20181121 i_shannon -1.20
8 NP07Q2_20190604 20190604 i_shannon -1.88
9 NP07Q2_20191218 20191218 i_shannon -1.44
10 NP07Q2_20200519 20200519 i_shannon -2.15
# … with 529 more rows
[[5]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 fitovol 871.
2 P04Q1_20190604 20190604 fitovol 173.
3 P04Q1_20191218 20191218 fitovol 118.
4 P04Q1_20200519 20200519 fitovol 241.
5 P04Q1_20201117 20201117 fitovol 204.
6 P04Q1_20210519 20210519 fitovol 546.
7 P04Q2_20181121 20181121 fitovol 4361.
8 P04Q2_20190604 20190604 fitovol 238.
9 P04Q2_20191218 20191218 fitovol 640.
10 P04Q2_20200519 20200519 fitovol 442.
# … with 534 more rows
[[6]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 mantillo 5
2 P04Q1_20190604 20190604 mantillo 8
3 P04Q1_20191218 20191218 mantillo 76
4 P04Q1_20200519 20200519 mantillo 1
5 P04Q1_20201117 20201117 mantillo 2
6 P04Q1_20210519 20210519 mantillo 2
7 P04Q2_20181121 20181121 mantillo 18
8 P04Q2_20190604 20190604 mantillo 60
9 P04Q2_20191218 20191218 mantillo 25
10 P04Q2_20200519 20200519 mantillo 40
# … with 534 more rows
[[7]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 cob_total 35
2 P04Q1_20190604 20190604 cob_total 22
3 P04Q1_20191218 20191218 cob_total 12
4 P04Q1_20200519 20200519 cob_total 16
5 P04Q1_20201117 20201117 cob_total 16
6 P04Q1_20210519 20210519 cob_total 33
7 P04Q2_20181121 20181121 cob_total 75
8 P04Q2_20190604 20190604 cob_total 25
9 P04Q2_20191218 20191218 cob_total 15
10 P04Q2_20200519 20200519 cob_total 22
# … with 534 more rows
[[8]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 rec_veg 29.5
2 P04Q1_20190604 20190604 rec_veg 27.4
3 P04Q1_20191218 20191218 rec_veg 9.4
4 P04Q1_20200519 20200519 rec_veg 22.3
5 P04Q1_20201117 20201117 rec_veg 17.6
6 P04Q1_20210519 20210519 rec_veg 31.7
7 P04Q2_20181121 20181121 rec_veg 81.4
8 P04Q2_20190604 20190604 rec_veg 25.1
9 P04Q2_20191218 20191218 rec_veg 15.5
10 P04Q2_20200519 20200519 rec_veg 18.5
# … with 534 more rows
[[9]]
# A tibble: 640 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 riqueza 8
2 P04Q1_20190604 20190604 riqueza 14
3 P04Q1_20191009 20191009 riqueza 11
4 P04Q1_20191218 20191218 riqueza 10
5 P04Q1_20200519 20200519 riqueza 20
6 P04Q1_20201117 20201117 riqueza 10
7 P04Q1_20210519 20210519 riqueza 10
8 P04Q2_20181121 20181121 riqueza 11
9 P04Q2_20190604 20190604 riqueza 10
10 P04Q2_20191009 20191009 riqueza 8
# … with 630 more rows
[[10]]
# A tibble: 288 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20190305 20190305 rango_quema 2
2 P04Q1_20190305 20190305 porc_soflamado 75
3 P04Q1_20190305 20190305 porc_quemado 25
4 P04Q2_20190305 20190305 rango_quema 4
5 P04Q2_20190305 20190305 porc_soflamado 30
6 P04Q2_20190305 20190305 porc_quemado 70
7 P04Q3_20190305 20190305 rango_quema 1
8 P04Q3_20190305 20190305 porc_soflamado 40
9 P04Q3_20190305 20190305 porc_quemado 5
10 P04Q4_20190305 20190305 rango_quema 5
# … with 278 more rows
[[11]]
# A tibble: 544 × 4
eventID measurementDeterminedDate name measurementValue
<chr> <chr> <chr> <dbl>
1 P04Q1_20181121 20181121 tasa_consumo 0
2 P04Q1_20190604 20190604 tasa_consumo 0
3 P04Q1_20191218 20191218 tasa_consumo 1.5
4 P04Q1_20200519 20200519 tasa_consumo 1.64
5 P04Q1_20201117 20201117 tasa_consumo 0.972
6 P04Q1_20210519 20210519 tasa_consumo 0.896
7 P04Q2_20181121 20181121 tasa_consumo 0
8 P04Q2_20190604 20190604 tasa_consumo 0
9 P04Q2_20191218 20191218 tasa_consumo 1.77
10 P04Q2_20200519 20200519 tasa_consumo 0.973
# … with 534 more rows
event_altura_max <-
altura_max_promedio_quadrat |>
mutate(measurementValue = round(measurementValue, 2)) |>
mutate(name = case_when(name == "alt_prom" ~ "maxheight")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_altura_moda <-
altura_moda_promedio_quadrat |>
mutate(measurementValue = round(measurementValue, 2)) |>
mutate(name = case_when(name == "altura_promedio" ~ "modeheight")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_fitovol <-
fitovol_total_quadrat |>
mutate(name = case_when(name == "fitovol" ~ "fitovolumen")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_desnudo <-
desnudo_quadrat |>
mutate(name = case_when(name == "desnudo" ~ "bare_soil_percent")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_mantillo <-
mantillo_quadrat |>
mutate(name = case_when(name == "mantillo" ~ "litter_soil_percent")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_rec_total <-
rec_total_quadrat |>
mutate(name = case_when(name == "cob_total" ~ "tcover_percent")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_rec_veg <-
rec_veg_quadrat |>
mutate(name = case_when(name == "rec_veg" ~ "vcover_percent")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_diversidad <-
diversidad_quadrat |>
mutate(measurementValue = round(abs(measurementValue),3)) |>
mutate(name = case_when(name == "i_shannon" ~ "diversity")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_riqueza <-
riqueza_quadrat |>
mutate(name = case_when(name == "riqueza" ~ "richness")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_severidad <-
sev_quema_quad_tot |>
mutate(name =
case_when(name == "rango_quema" ~ "burning",
name == "porc_soflamado" ~ "blowing_level_percent",
name == "porc_quemado" ~ "burning_level_percent")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
event_tasa_consumo <-
tasa_consumo_promedio_quadrat |>
mutate(measurementValue = round(measurementValue, 2)) |>
mutate(name = case_when(name == "tasa_consumo" ~ "tc")) |>
inner_join(dicc_variables,
by = c("name" = "raw_key")) |>
unite("measurementID", c(eventID, id), remove = FALSE) |>
dplyr::select(-code, -name, -id)
o <- ls(pattern = "event_*")
emof_quadrats <- bind_rows(mget(o)) |>
relocate(measurementType, measurementValue, measurementUnit, .after = eventID)
La tabla se exporta en csv en el siguiente enlace data/dwc_db/emof_quadrats.csv
.
# Export table
write_csv(emof_quadrats,
here::here("data/dwc_db/emof_quadrats.csv"))
Aspecto de la tabla:
sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.3.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] janitor_2.1.0 here_1.0.1 forcats_0.5.2 stringr_1.4.1
[5] dplyr_1.0.10 purrr_0.3.5 readr_2.1.3 tidyr_1.2.1
[9] tibble_3.1.8 ggplot2_3.4.0 tidyverse_1.3.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] httr_1.4.4 sass_0.4.4 bit64_4.0.5
[4] vroom_1.6.0 jsonlite_1.8.4 modelr_0.1.9
[7] bslib_0.4.2 assertthat_0.2.1 getPass_0.2-2
[10] googlesheets4_1.0.1 cellranger_1.1.0 yaml_2.3.7
[13] pillar_1.8.1 backports_1.4.1 glue_1.6.2
[16] digest_0.6.31 promises_1.2.0.1 rvest_1.0.3
[19] snakecase_0.11.0 colorspace_2.0-3 htmltools_0.5.4
[22] httpuv_1.6.8 pkgconfig_2.0.3 broom_1.0.1
[25] haven_2.5.1 scales_1.2.1 processx_3.7.0
[28] whisker_0.4 later_1.3.0 tzdb_0.3.0
[31] git2r_0.30.1 googledrive_2.0.0 generics_0.1.3
[34] DT_0.26 ellipsis_0.3.2 cachem_1.0.6
[37] withr_2.5.0 cli_3.6.0 magrittr_2.0.3
[40] crayon_1.5.2 readxl_1.4.1 evaluate_0.18
[43] ps_1.7.1 fs_1.5.2 fansi_1.0.3
[46] xml2_1.3.3 tools_4.2.1 hms_1.1.2
[49] gargle_1.2.1 lifecycle_1.0.3 munsell_0.5.0
[52] reprex_2.0.2 callr_3.7.3 compiler_4.2.1
[55] jquerylib_0.1.4 rlang_1.0.6 grid_4.2.1
[58] rstudioapi_0.14 htmlwidgets_1.5.4 crosstalk_1.2.0
[61] rmarkdown_2.18 gtable_0.3.1 DBI_1.1.3
[64] R6_2.5.1 lubridate_1.8.0 knitr_1.41
[67] fastmap_1.1.0 bit_4.0.4 utf8_1.2.2
[70] rprojroot_2.0.3 stringi_1.7.8 parallel_4.2.1
[73] Rcpp_1.0.9 vctrs_0.5.1 dbplyr_2.2.1
[76] tidyselect_1.2.0 xfun_0.35