Last updated: 2023-02-20

Checks: 7 0

Knit directory: dwc_o2p/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 11b06b2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/prepara_dwc_o2p_suelo.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/dicc_variables.Rmd) and HTML (docs/dicc_variables.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 11b06b2 ajpelu 2023-02-20 add dic variables

Diccionario de variables

Vamos a crear un diccionario de variables (var_dic) para generar el extendedMeasurmentOrFact. Utilizaremos en la medida de lo posible una tipología de campos lo más parecida a las descripciones existentes en las extensiones MeasurementOrFact (MoF) o ExtendedMeasurementOrFact (eMoF) de GBIF. La estructura de la tabla es:

  • id_var: identificador. Requerido. Acordamos que los parámetros relacionados con suelo llevarán delante la letra S, mientras que los de vegetación la palabra V. La estructura será X00 siendo X: S (Soil) o V (Vegetation), y 00 hace referencia un número del 0 al 99.
  • name_var: nombre de la variable (req.). GBIF recomienda usar un vocabulario controlado. Corresponde con measurementType
  • code: código de la variable.
  • units: unidades de la variable. Correspondencia con measurementUnit
  • methods: campo para indicar una descripción de los métodos. Correspondencia con measurementMethod
  • raw_key: la clave (código de los nombres de las variables en el conjunto de datos original, para poder hacer la transformación).
  • url_controlled: url del identificador del término en un vocabulario controlado. Sugiero utilizar este: https://vocabs.lter-europe.net/envthes/en/.
library(tidyverse) # Easily Install and Load the 'Tidyverse'
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0      ✔ purrr   0.3.5 
✔ tibble  3.1.8      ✔ dplyr   1.0.10
✔ tidyr   1.2.1      ✔ stringr 1.4.1 
✔ readr   2.1.3      ✔ forcats 0.5.2 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(here) # A Simpler Way to Find Your Files
here() starts at /Users/ajpelu/SERPAM Dropbox/14_GBIF/01_O2P/dwc_o2p
library(data.table)

Attaching package: 'data.table'

The following objects are masked from 'package:dplyr':

    between, first, last

The following object is masked from 'package:purrr':

    transpose
dic_var <- read.csv(here::here("data/raw/dic_var.csv"), sep = ";")

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.3.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] data.table_1.14.6 here_1.0.1        forcats_0.5.2     stringr_1.4.1    
 [5] dplyr_1.0.10      purrr_0.3.5       readr_2.1.3       tidyr_1.2.1      
 [9] tibble_3.1.8      ggplot2_3.4.0     tidyverse_1.3.2   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.9          lubridate_1.8.0     getPass_0.2-2      
 [4] ps_1.7.1            assertthat_0.2.1    rprojroot_2.0.3    
 [7] digest_0.6.31       utf8_1.2.2          R6_2.5.1           
[10] cellranger_1.1.0    backports_1.4.1     reprex_2.0.2       
[13] evaluate_0.18       httr_1.4.4          pillar_1.8.1       
[16] rlang_1.0.6         readxl_1.4.1        googlesheets4_1.0.1
[19] rstudioapi_0.14     whisker_0.4         callr_3.7.3        
[22] jquerylib_0.1.4     DT_0.26             rmarkdown_2.18     
[25] googledrive_2.0.0   htmlwidgets_1.5.4   munsell_0.5.0      
[28] broom_1.0.1         compiler_4.2.1      httpuv_1.6.8       
[31] modelr_0.1.9        xfun_0.35           pkgconfig_2.0.3    
[34] htmltools_0.5.4     tidyselect_1.2.0    fansi_1.0.3        
[37] crayon_1.5.2        withr_2.5.0         tzdb_0.3.0         
[40] dbplyr_2.2.1        later_1.3.0         grid_4.2.1         
[43] jsonlite_1.8.4      gtable_0.3.1        lifecycle_1.0.3    
[46] DBI_1.1.3           git2r_0.30.1        magrittr_2.0.3     
[49] scales_1.2.1        cli_3.6.0           stringi_1.7.8      
[52] cachem_1.0.6        fs_1.5.2            promises_1.2.0.1   
[55] xml2_1.3.3          bslib_0.4.2         ellipsis_0.3.2     
[58] generics_0.1.3      vctrs_0.5.1         tools_4.2.1        
[61] glue_1.6.2          crosstalk_1.2.0     hms_1.1.2          
[64] processx_3.7.0      fastmap_1.1.0       yaml_2.3.7         
[67] colorspace_2.0-3    gargle_1.2.1        rvest_1.0.3        
[70] knitr_1.41          haven_2.5.1         sass_0.4.4